Previous Issue
Volume 4, December
 
 

Geomatics, Volume 5, Issue 1 (March 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 2289 KiB  
Article
Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating
by Rizwan Ahmed Ansari, Rakesh Malhotra and Mohammed Zakariya Ansari
Geomatics 2025, 5(1), 7; https://doi.org/10.3390/geomatics5010007 (registering DOI) - 31 Jan 2025
Viewed by 318
Abstract
Semantic segmentation of remotely sensed images for building footprint recognition has been extensively researched, and several supervised and unsupervised approaches have been presented and adopted. The capacity to do real-time mapping and precise segmentation on a significant scale while considering the intrinsic diversity [...] Read more.
Semantic segmentation of remotely sensed images for building footprint recognition has been extensively researched, and several supervised and unsupervised approaches have been presented and adopted. The capacity to do real-time mapping and precise segmentation on a significant scale while considering the intrinsic diversity of the urban landscape in remotely sensed data has significant consequences. This study presents a novel approach for delineating building footprints by utilizing the compressed sensing and radial basis function technique. At the feature extraction stage, a small set of random features of the built-up areas is extracted from local image windows. The random features are used to train a radial basis neural network to perform building classification; thus, learning and classification are carried out in the compressed sensing domain. By virtue of its ability to represent characteristics in a reduced dimensional space, the scheme shows promise in being robust in the face of variability inherent in urban remotely sensed images. Through a comparison of the proposed method with numerous state-of-the-art approaches utilizing remotely sensed data of different spatial resolutions and building clutter, we establish its robustness and prove its viability. Accuracy assessment is performed for segmented footprints, and comparative analysis is carried out in terms of intersection over union, overall accuracy, precision, recall, and F1 score. The proposed method achieved scores of 93% in overall accuracy, 90.4% in intersection over union, and 91.1% in F1 score, even when dealing with drastically different image features. The results demonstrate that the proposed methodology yields substantial enhancements in classification accuracy and decreases in feature dimensionality. Full article
20 pages, 6322 KiB  
Article
Analyzing Decadal Trends of Vegetation Cover in Djibouti Using Landsat and Open Data Cube
by Julee Wardle and Zachary Phillips
Geomatics 2025, 5(1), 6; https://doi.org/10.3390/geomatics5010006 - 30 Jan 2025
Viewed by 360
Abstract
This study investigates decadal trends in vegetation cover in Djibouti from 1990 to 2020, addressing challenges related to its arid climate and limited resources. Using Digital Earth Africa’s Open Data Cube and thirty years of Landsat imagery, change detection algorithms, and statistical analysis, [...] Read more.
This study investigates decadal trends in vegetation cover in Djibouti from 1990 to 2020, addressing challenges related to its arid climate and limited resources. Using Digital Earth Africa’s Open Data Cube and thirty years of Landsat imagery, change detection algorithms, and statistical analysis, this research explores vegetation dynamics at various spatial and temporal scales. Studies on change detection have advanced the field through exploring Landsat time series and diverse algorithms, but face limitations in handling data inconsistencies, integrating methods, and addressing practical and socio-environmental challenges. The results, obtained through change detection using NDVI differencing and Welch’s t-test, reveal significant trends in vegetation across Djibouti’s administrative and countrywide levels. Results show significant countrywide vegetative loss from 1990 to 2010, but recovery from 2010 to 2020, as evidenced by Welch’s t-test results. This disproved the Null Hypothesis of no trend and confirmed significant trends across all regions and resolutions analyzed. The findings provide important information for policymakers, land managers, and conservationists, providing awareness into patterns of Djibouti’s vegetation trends in the face of future climate change. The use of Open Data Cube and cloud computing enhances research capacity, allowing for the rapid and repeated analysis of larger time periods and geographical regions. Full article
Show Figures

Figure 1

29 pages, 25762 KiB  
Article
Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS
by Polina Lemenkova
Geomatics 2025, 5(1), 5; https://doi.org/10.3390/geomatics5010005 - 20 Jan 2025
Viewed by 681
Abstract
This article presents the application of novel cartographic methods of vegetation mapping with a case study of the Rif Mountains, northern Morocco. The study area is notable for varied geomorphology and diverse landscapes. The methodology includes ML modules of GRASS GIS ‘r.learn.train’, ‘r.learn.predict’, [...] Read more.
This article presents the application of novel cartographic methods of vegetation mapping with a case study of the Rif Mountains, northern Morocco. The study area is notable for varied geomorphology and diverse landscapes. The methodology includes ML modules of GRASS GIS ‘r.learn.train’, ‘r.learn.predict’, and ‘r.random’ with algorithms of supervised classification implemented from the Scikit-Learn libraries of Python. This approach provides a platform for processing spatiotemporal data and satellite image analysis. The objective is to determine the robustness of the “DecisionTreeClassifier” and “ExtraTreesClassifier” classification algorithms. The time series of satellite images covering northern Morocco consists of six Landsat scenes for 2023 with a bimonthly time interval. Land cover maps are produced based on the processed, classified, and analyzed images. The results demonstrated seasonal changes in vegetation and land cover types. The validation was performed using a land cover dataset from the Food and Agriculture Organization (FAO). This study contributes to environmental monitoring in North Africa using ML algorithms of satellite image processing. Using RS data combined with the powerful functionality of the GRASS GIS and FAO-derived datasets, the topographic variability, moderate-scale habitat heterogeneity, and bimonthly distribution of land cover types of northern Morocco in 2023 have been assessed for the first time. Full article
Show Figures

Figure 1

16 pages, 12204 KiB  
Article
Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data
by Judith N. Oppong, Clement E. Akumu, Samuel Dennis and Stephanie Anyanwu
Geomatics 2025, 5(1), 4; https://doi.org/10.3390/geomatics5010004 - 10 Jan 2025
Viewed by 470
Abstract
Deep learning models offer valuable insights by leveraging large datasets, enabling precise and strategic decision-making essential for modern agriculture. Despite their potential, limited research has focused on the performance of pixel-based deep learning algorithms for detecting and mapping weed canopy cover. This study [...] Read more.
Deep learning models offer valuable insights by leveraging large datasets, enabling precise and strategic decision-making essential for modern agriculture. Despite their potential, limited research has focused on the performance of pixel-based deep learning algorithms for detecting and mapping weed canopy cover. This study aims to evaluate the effectiveness of three neural network architectures—U-Net, DeepLabV3 (DLV3), and pyramid scene parsing network (PSPNet)—in mapping weed canopy cover in winter wheat. Drone data collected at the jointing and booting growth stages of winter wheat were used for the analysis. A supervised deep learning pixel classification methodology was adopted, and the models were tested on broadleaved weed species, winter wheat, and other weed species. The results show that PSPNet outperformed both U-Net and DLV3 in classification performance, with PSPNet achieving the highest overall mapping accuracy of 80%, followed by U-Net at 75% and DLV3 at 56.5%. These findings highlight the potential of pixel-based deep learning algorithms to enhance weed canopy mapping, enabling farmers to make more informed, site-specific weed management decisions, ultimately improving production and promoting sustainable agricultural practices. Full article
Show Figures

Figure 1

19 pages, 11895 KiB  
Article
Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing
by Ericka F. Picado, Kerin F. Romero and Muditha K. Heenkenda
Geomatics 2025, 5(1), 3; https://doi.org/10.3390/geomatics5010003 - 5 Jan 2025
Viewed by 643
Abstract
Various nutrients are needed during the sugarcane growing season for plant development and productivity. However, traditional methods for assessing nutritional status are often costly and time consuming. This study aimed to determine the level of nitrogen (N), phosphorus (P), potassium (K) and chlorophyll [...] Read more.
Various nutrients are needed during the sugarcane growing season for plant development and productivity. However, traditional methods for assessing nutritional status are often costly and time consuming. This study aimed to determine the level of nitrogen (N), phosphorus (P), potassium (K) and chlorophyll of sugarcane plants using remote sensing. Remotely sensed images were obtained using a MicaSense RedEdge-P camera attached to a drone. Leaf chlorophyll content was measured in the field using an N-Tester chlorophyll meter, and leaf samples were collected and analyzed in the laboratory for N, P and K. The highest correlation between field samples and predictor variables (spectral bands, selected vegetation indices, and plant height from Light Detection and Ranging (LiDAR)), were noted.The spatial distribution of chlorophyll, N, P, and K maps achieved 60%, 75%, 96% and 50% accuracies, respectively. The spectral profiles helped to identify areas with visual differences. Spatial variability of nutrient maps confirmed that moisture presence leads to nitrogen and potassium deficiencies, excess phosphorus, and a reduction in vegetation density (93.82%) and height (2.09 m), compared to green, healthy vegetation (97.64% density and 3.11 m in height). This robust method of assessing foliar nutrients is repeatable for the same sugarcane variety at certain conditions and leads to sustainable agricultural practices in Costa Rica. Full article
Show Figures

Figure 1

26 pages, 949 KiB  
Article
Lessons Learned from the LBS2ITS Project—An Interdisciplinary Approach for Curricula Development in Geomatics Education
by Günther Retscher, Jelena Gabela and Vassilis Gikas
Geomatics 2025, 5(1), 2; https://doi.org/10.3390/geomatics5010002 - 30 Dec 2024
Viewed by 400
Abstract
The LBS2ITS project, titled “Curricula Enrichment Delivered through the Application of Location-Based Services to Intelligent Transport Systems”, is a collaborative initiative funded by the Erasmus+ program of the European Union. The primary objectives of the project were twofold: to develop new curricula and [...] Read more.
The LBS2ITS project, titled “Curricula Enrichment Delivered through the Application of Location-Based Services to Intelligent Transport Systems”, is a collaborative initiative funded by the Erasmus+ program of the European Union. The primary objectives of the project were twofold: to develop new curricula and modernize existing programs at four universities in Sri Lanka. This effort was driven by the need to align educational offerings with the rapidly evolving fields of Location-Based Services (LBSs) and Intelligent Transport Systems (ITSs). A key feature of the LBS2ITS project is its interdisciplinary approach, which draws on expertise from a range of academic disciplines. The project has successfully developed curricula that integrate diverse fields such as geomatics, cartography, transport engineering, urban planning, environmental engineering, and computer science. By blending these perspectives, the curricula provide students with a holistic understanding of LBSs and ITSs, preparing them to address complex, real-world challenges that span multiple sectors. In this paper, the curriculum development and modernization process is detailed, with a particular focus on the two key phases: teacher training and curriculum development. The teacher training phase was crucial in equipping educators with the skills and knowledge necessary to deliver the new and updated courses. This phase also provided an opportunity for teachers to familiarize themselves with the latest trends and technologies in LBSs and ITSs, ensuring that they could effectively convey this information to students. The development phase focused on the creation of the curriculum itself, ensuring that it met both academic standards and industry needs. The curriculum was designed to be flexible and responsive to emerging technologies and methodologies, allowing for continuous improvement and adaptation. Additionally, the paper delves into the theoretical frameworks underpinning the methodologies employed in the project. These include Problem-Based Learning (PBL) and Problem-Based e-Learning (PBeL), both of which encourage active student engagement and foster critical thinking by having students tackle real-world problems. The emphasis on PBL ensures that students not only acquire theoretical knowledge but also develop practical problem-solving skills applicable to their future careers in LBSs and ITSs. Furthermore, the project incorporated rigorous quality assurance (QA) mechanisms to ensure that the teaching methods and curriculum content met high standards. This included regular feedback loops, stakeholder involvement, and iterative refinement of course materials based on evaluations from both students and industry experts. These QA measures are essential for maintaining the relevance, effectiveness, and sustainability of the curricula over time. In summary, the LBS2ITS project represents a significant effort to enrich and modernize university curricula in Sri Lanka by integrating cutting-edge technologies and interdisciplinary approaches. Through a combination of innovative teaching methodologies, comprehensive teacher training, and robust quality assurance practices, the project aims to equip students with the skills and knowledge needed to excel in the fields of LBSs and ITSs. Full article
Show Figures

Figure 1

30 pages, 16396 KiB  
Article
Relationship Between Lithological and Morphometric Aspects of Mascasín Saline Watershed and Its Feeder Depositional Systems, San Juan and La Rioja Provinces, Argentina
by Paula Santi Malnis and Luis Martin Rothis
Geomatics 2025, 5(1), 1; https://doi.org/10.3390/geomatics5010001 - 30 Dec 2024
Viewed by 509
Abstract
Understanding the relationships among watersheds and derived depositional products is critical to developing analog studies with the rock record, especially for continental intermontane basins. Also, it is crucial to study river flood occurrences. Multivariate statistics analysis allows for the comprehension of the relationship [...] Read more.
Understanding the relationships among watersheds and derived depositional products is critical to developing analog studies with the rock record, especially for continental intermontane basins. Also, it is crucial to study river flood occurrences. Multivariate statistics analysis allows for the comprehension of the relationship among substrate, climate, and depositional products of the watersheds that feed the endorheic Mascasin Saline Basin, San Juan and La Rioja provinces, Argentina. Using a GIS platform, geomorphological, stratigraphic, morphometric, and structural analysis gave a dataset of variables for defining clusters. Under a similar climate, clustering analysis permits defining two main controls on watersheds and depositional products: parent rock composition and geological structures (faults and lineaments). The results underscore the critical role that lithology and structural controls play in basin morphometry and emphasize the need to quantify these variables for landscape evolution models. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop