RETRACTED: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology
Abstract
:1. Introduction
- Introduce the utilization of a conditional GAN framework for generating a large and diverse synthetic dataset of human faces afflicted with acne. The conditional GAN framework enables the modulation of acne severity levels in the generated faces.
- Conduct a comprehensive investigation into state-of-the-art object detection models, including YOLOv5, YOLOv8, and Detectron2, to compare their performance with and without integrating the synthetic dataset as an additional training data source.
- Perform extensive experiments that showcase the capability of the proposed approach to enhance accuracy and robustness in acne detection on real facial images. Furthermore, we demonstrate that the synthetic dataset enhances the generalization ability of deep learning models.
2. Materials and Methods
2.1. Proposed Method
2.2. Generative Adversarial Networks (GANs)
2.3. Acne Detection
2.3.1. YOLOv5 and YOLOv8
2.3.2. Detectron2
3. Experiments
3.1. Datasets
3.2. Dataset Expansion with GAN
3.3. Annotation Heatmaps
3.4. Implementation Details
3.5. Evaluation Metrics
4. Results and Discussion
4.1. Synthetic Data Analysis
4.2. Synthetic Data Analysis
4.3. CNN Models’ Performance Evaluation with StyleGAN2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, J.K.L.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172, 3–12. [Google Scholar] [CrossRef]
- Gallitano, S.M.; Berson, D.S. How Acne Bumps Cause the Blues: The Influence of Acne Vulgaris on Self-Esteem. Int. J. Women’s Dermatol. 2018, 4, 12–17. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Yan, C.; Zhou, H. An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network. Sci. Rep. 2018, 8, 5839. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Zhang, J.; Wang, J.; Liu, W.; Li, J.; Jiang, X. Decoupled Sequential Detection Head for accurate acne detection. Knowl. Based Syst. 2024, 284, 111305. [Google Scholar] [CrossRef]
- Gayap, H.T.; Akhloufi, M.A. Deep Machine Learning for Medical Diagnosis, Application to Lung Cancer Detection: A Review. BioMedInformatics 2024, 4, 15. [Google Scholar] [CrossRef]
- Ali, M.A.; Dornaika, F.; Arganda-Carreras, I.; Ali, H.; Karaouni, M. Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning. BioMedInformatics 2024, 4, 35. [Google Scholar] [CrossRef]
- Hong, G.-J.; Li, D.-L.; Pare, S.; Saxena, A.; Prasad, M.; Lin, C.-T. Adaptive Decision Support System for On-Line Multi-Class Learning and Object Detection. Appl. Sci. 2021, 11, 11268. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Huang, T.; Ma, Z.; Lin, Z.; Prasad, M. GAN2C: Information Completion GAN with Dual Consistency Constraints. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Junayed, M.S.; Jeny, A.A.; Atik, S.T.; Neehal, N.; Karim, A.; Azam, S.; Shanmugam, B. AcneNet—A Deep CNN Based Classification Approach for Acne Classes. In Proceedings of the 2019 12th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, 18 July 2019; IEEE: New York, NY, USA, 2019; pp. 203–208. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; Sivasai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, S.; Peng, Y.; He, X.; Zhao, X.; Huang, K.; Wu, X.; Fan, W.; Li, F.; Chen, M.; et al. Studies on Different CNN Algorithms for Face Skin Disease Classification Based on Clinical Images. IEEE Access 2019, 7, 66505–66511. [Google Scholar] [CrossRef]
- Jha, A.; Ananthanarayana, V.S. An Interpretable Deep Learning Model for Skin Lesion Classification. In Advances in Computing and Data Sciences, Proceedings of the 7th International Conference, ICACDS 2023, Kolkata, India, 27–28 April 2023; Springer: Cham, Switzerland, 2023; pp. 543–553. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, C.-M.; Zhang, S.; He, F.; Liu, F.; Wang, B.; Huang, Y.; Shi, W.; Jian, D.; Xie, H.; et al. A Novel Convolutional Neural Network for the Diagnosis and Classification of Rosacea: Usability Study. JMIR Med. Inform. 2021, 9, e23415. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Zhou, H.; He, K.; Duan, M.; Zheng, Q.; Xiong, P.; Huang, L.; Yu, Q.; Su, G.; et al. DiaMole: Mole Detection and Segmentation Software for Mobile Phone Skin Images. J. Healthc. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [Google Scholar] [CrossRef]
- Ghorbani, A.; Natarajan, V.; Coz, D.; Liu, Y. DermGAN: Synthetic Generation of Clinical Skin Images with Pathology. Proc. Mach. Learn. Res. 2019, 116, 155–170. [Google Scholar]
- Baur, C.; Albarqouni, S.; Navab, N. Generating Highly Realistic Images of Skin Lesions with GANs. arXiv 2018, arXiv:1809.01410. [Google Scholar]
- Zein, H.; Chantaf, S.; Fournier, R.; Nait-Ali, A. Generative Adversarial Networks for anonymous Acneic face dataset generation. arXiv 2022, arXiv:2211.04214. [Google Scholar]
- Lin, Y.; Jiang, J.; Ma, Z.; Chen, D.; Guan, Y.; Liu, X.; You, H.; Yang, J.; Cheng, X. CGPG-GAN: An Acne Lesion Inpainting Model for Boosting Downstream Diagnosis. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; IEEE: New York, NY, USA, 2022; pp. 1634–1638. [Google Scholar] [CrossRef]
- Al-Saedi, D.K.A.; Savaş, S. Classification of Skin Cancer with Deep Transfer Learning Method. Comput. Sci. 2022, IDAP-2022, 202–210. [Google Scholar] [CrossRef]
- Alhudhaif, A.; Almaslukh, B.; Aseeri, A.O.; Guler, O.; Polat, K. A novel nonlinear automated multi-class skin lesion detection system using soft-attention based convolutional neural networks. Chaos Solitons Fractals 2023, 170, 113409. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Zhao, J.; Zhang, L. Skin disease diagnosis with deep learning: A review. Neurocomputing 2021, 464, 364–393. [Google Scholar] [CrossRef]
- Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study. Appl. Sci. 2022, 12, 5990. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2019, arXiv:1912.04958. [Google Scholar]
- Ultralytics. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 8 August 2023).
- Ultralytics. YOLOv8. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 August 2023).
- F.A.I. Research. Detectron2. Available online: https://github.com/facebookresearch/detectron2 (accessed on 2 September 2023).
Number of Images without GAN | Number of Images with GAN | |||
---|---|---|---|---|
Type | Percentage | Total | Percentage | Total |
Train | 70% | 1020 images | 70% | 3441 images |
Test | 20% | 291 images | 20% | 983 images |
Validation | 10% | 145 images | 10% | 491 images |
Model Name | ||||
---|---|---|---|---|
YOLOv5 | 58.0% | 60.6% | 50.1% | 54.85% |
YOLOv8 | 66.2% | 72.5% | 60.8% | 66.14% |
Detectron2 | 33.5% | 45.1% | 35.3% | 39.60% |
Model Name | ||||
---|---|---|---|---|
YOLOv5 | 73.5% | 76.1% | 68.1% | 71.88% |
YOLOv8 | 73.6% | 80.2% | 65.3% | 71.99% |
Detectron2 | 37.7% | 42.1% | 43.6% | 42.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankar, A.; Chaturvedi, K.; Nayan, A.-A.; Hesamian, M.H.; Braytee, A.; Prasad, M. RETRACTED: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology. BioMedInformatics 2024, 4, 1059-1070. https://doi.org/10.3390/biomedinformatics4020059
Sankar A, Chaturvedi K, Nayan A-A, Hesamian MH, Braytee A, Prasad M. RETRACTED: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology. BioMedInformatics. 2024; 4(2):1059-1070. https://doi.org/10.3390/biomedinformatics4020059
Chicago/Turabian StyleSankar, Aravinthan, Kunal Chaturvedi, Al-Akhir Nayan, Mohammad Hesam Hesamian, Ali Braytee, and Mukesh Prasad. 2024. "RETRACTED: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology" BioMedInformatics 4, no. 2: 1059-1070. https://doi.org/10.3390/biomedinformatics4020059
APA StyleSankar, A., Chaturvedi, K., Nayan, A. -A., Hesamian, M. H., Braytee, A., & Prasad, M. (2024). RETRACTED: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology. BioMedInformatics, 4(2), 1059-1070. https://doi.org/10.3390/biomedinformatics4020059