An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors
Abstract
:1. Introduction
- to comprehensively investigate the potential of smart sensor technology in the assessment of CW. This encompasses exploring the effectiveness, accuracy, and practicality of various smart sensors in detecting and quantifying the cognitive load under different conditions and in various groups of populations with different characteristics.
- to identify the principal physiological signals employed for CW monitoring in HMI applications, focusing on approaches based on both unimodal and multimodal physiological signal acquisitions.
- to describe the ML-based approaches used to evaluate the CW from physiological signals, acquired through wearable sensors.
2. Physiological Signals Acquired through Wearable Sensors for HMI
3. Cognitive Workload Monitoring through Unimodal and Multimodal Approach
3.1. Unimodal Physiological Monitoring of Cognitive Workload
3.2. Multimodal Physiological Monitoring of Cognitive Workload
4. Cognitive Workload Assessment through Machine Learning Approaches
5. Discussion
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Ren, Z.; Yu, X.; Huang, A. A Dynamic Model of Evolutionary Knowledge and Capabilities Based on Human-Machine Interaction in Smart Manufactures. Comput. Intell. Neurosci. 2022, 2022, 8584888. [Google Scholar] [CrossRef]
- Hopko, S.; Wang, J.; Mehta, R. Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review. Front. Robot. AI 2022, 9, 799522. [Google Scholar] [CrossRef]
- Poklukar, Š.; Papa, G.; Novak, F. A Formal Framework of Human–Machine Interaction in Proactive Maintenance–MANTIS Experience. Autom. Časopis Autom. Mjer. Elektron. Računarstvo Komun. 2017, 58, 450–459. [Google Scholar]
- Xie, Y.; Liu, G.; Ren, J.; Liu, Y.; Yao, L.; Xu, B.; Chen, D.; Liu, Y. Micro-Fabrication Based Epidermal E-Tattoo with Conformability and Sensitivity as Human-Machine Interface. J. Phys. Conf. Ser. 2023, 2463, 012019. [Google Scholar] [CrossRef]
- Nardo, M.; Forino, D.; Murino, T. The Evolution of Man–Machine Interaction: The Role of Human in Industry 4.0 Paradigm. Prod. Manuf. Res. 2020, 8, 20–34. [Google Scholar] [CrossRef]
- Lorenzini, M.; Lagomarsino, M.; Fortini, L.; Gholami, S.; Ajoudani, A. Ergonomic Human-Robot Collaboration in Industry: A Review. Front. Robot. AI 2023, 9, 262. [Google Scholar] [CrossRef]
- Tang, H.; Guo, J.; Zhou, G. Mission Reliability Analysis of Man-Machine System. In Proceedings of the 2015 First International Conference on Reliability Systems Engineering (ICRSE), Beijing, China, 21–23 October 2015; pp. 1–5. [Google Scholar]
- Rubagotti, M.; Tusseyeva, I.; Baltabayeva, S.; Summers, D.; Sandygulova, A. Perceived Safety in Physical Human–Robot Interaction—A Survey. Robot. Auton. Syst. 2022, 151, 104047. [Google Scholar] [CrossRef]
- Braarud, P.Ø.; Bodal, T.; Hulsund, J.E.; Louka, M.N.; Nihlwing, C.; Nystad, E.; Svengren, H.; Wingstedt, E. An Investigation of Speech Features, Plant System Alarms, and Operator–System Interaction for the Classification of Operator Cognitive Workload during Dynamic Work. Hum. Factors 2021, 63, 736–756. [Google Scholar] [CrossRef] [PubMed]
- Heard, J.; Fortune, J.; Adams, J.A. Speech Workload Estimation for Human-Machine Interaction. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 277–281. [Google Scholar] [CrossRef]
- Khundaqji, H.; Hing, W.; Furness, J.; Climstein, M. Wearable Technology to Inform the Prediction and Diagnosis of Cardiorespiratory Events: A Scoping Review. PeerJ 2021, 9, e12598. [Google Scholar] [CrossRef]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring Mental Workload with EEG+ fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef]
- Curtin, A.; Ayaz, H. The Age of Neuroergonomics: Towards Ubiquitous and Continuous Measurement of Brain Function with fNIRS. Jpn. Psychol. Res. 2018, 60, 374–386. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Perpetuini, D.; Croce, P.; Greco, G.; Mistretta, L.; Rizzo, R.; Vinciguerra, V.; Romeo, M.F.; Zappasodi, F.; Merla, A. Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling. Sensors 2020, 20, 2831. [Google Scholar] [CrossRef]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Spadolini, E.; Mancini, L.; Chiarelli, A.M.; Merla, A. Can Functional Infrared Thermal Imaging Estimate Mental Workload in Drivers as Evaluated by Sample Entropy of the fNIRS Signal? In Proceedings of the 8th European Medical and Biological Engineering Conference: Proceedings of the EMBEC 2020, Portorož, Slovenia, 29 November–3 December 2020; Volume 80, pp. 223–232. [Google Scholar]
- Lim, S.; Son, D.; Kim, J.; Lee, Y.B.; Song, J.-K.; Choi, S.; Lee, D.J.; Kim, J.H.; Lee, M.; Hyeon, T. Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Adv. Funct. Mater. 2015, 25, 375–383. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Khundaqji, H.; Hing, W.; Furness, J.; Climstein, M. Smart Shirts for Monitoring Physiological Parameters: Scoping Review. JMIR Mhealth Uhealth 2020, 8, e18092. [Google Scholar] [CrossRef]
- Bin Heyat, M.B.; Akhtar, F.; Abbas, S.J.; Al-Sarem, M.; Alqarafi, A.; Stalin, A.; Abbasi, R.; Muaad, A.Y.; Lai, D.; Wu, K. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. Biosensors 2022, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Chen, S.; Li, J.; Yin, J.; Jiang, X. Strain-Ultrasensitive Surface Wrinkles for Visual Optical Sensors. Mater. Horiz. 2022, 9, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Michie, D.; Spiegelhalter, D.J.; Taylor, C.C. Machine Learning. Neural Stat. Classif. 1994, 13, 1–298. [Google Scholar]
- Perpetuini, D.; Formenti, D.; Cardone, D.; Trecroci, A.; Rossi, A.; Di Credico, A.; Merati, G.; Alberti, G.; Di Baldassarre, A.; Merla, A. Can Data-Driven Supervised Machine Learning Approaches Applied to Infrared Thermal Imaging Data Estimate Muscular Activity and Fatigue? Sensors 2023, 23, 832. [Google Scholar] [CrossRef]
- Di Credico, A.; Weiss, A.; Corsini, M.; Gaggi, G.; Ghinassi, B.; Wilbertz, J.H.; Di Baldassarre, A. Machine Learning Identifies Phenotypic Profile Alterations of Human Dopaminergic Neurons Exposed to Bisphenols and Perfluoroalkyls. Sci. Rep. 2023, 13, 21907. [Google Scholar] [CrossRef]
- Pan, B.; Hirota, K.; Jia, Z.; Dai, Y. A Review of Multimodal Emotion Recognition from Datasets, Preprocessing, Features, and Fusion Methods. Neurocomputing 2023, 561, 126866. [Google Scholar] [CrossRef]
- Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A Review of Affective Computing: From Unimodal Analysis to Multimodal Fusion. Inf. Fusion 2017, 37, 98–125. [Google Scholar] [CrossRef]
- Filippini, C.; Perpetuini, D.; Cardone, D.; Merla, A. Improving Human–Robot Interaction by Enhancing Nao Robot Awareness of Human Facial Expression. Sensors 2021, 21, 6438. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the Medical Revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef]
- Tan, S.; Islam, M.R.; Li, H.; Fernando, A.; Afroj, S.; Karim, N. Highly Scalable, Sensitive and Ultraflexible Graphene-Based Wearable E-Textiles Sensor for Bio-Signal Detection. Adv. Sens. Res. 2022, 1, 2200010. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Z.; Zhong, M.; Wan, P.; Zhang, W.; Zhang, L. A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Full-range Human–Machine Interfacing. Small 2018, 14, 1803018. [Google Scholar] [CrossRef] [PubMed]
- Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards Fog-Driven IoT eHealth: Promises and Challenges of IoT in Medicine and Healthcare. Future Gener. Comput. Syst. 2018, 78, 659–676. [Google Scholar] [CrossRef]
- Zheng, K.; Gu, F.; Wei, H.; Zhang, L.; Chen, X.; Jin, H.; Pan, S.; Chen, Y.; Wang, S. Flexible, Permeable, and Recyclable Liquid-Metal-Based Transient Circuit Enables Contact/Noncontact Sensing for Wearable Human–Machine Interaction. Small Methods 2023, 7, 2201534. [Google Scholar] [CrossRef] [PubMed]
- Ribino, P. The Role of Politeness in Human–Machine Interactions: A Systematic Literature Review and Future Perspectives. Artif. Intell. Rev. 2023, 56, 445–482. [Google Scholar] [CrossRef]
- Wu, S.; Hou, L.; Chen, H.; Zhang, G.K.; Zou, Y.; Tushar, Q. Cognitive Ergonomics-Based Augmented Reality Application for Construction Performance. Autom. Constr. 2023, 149, 104802. [Google Scholar] [CrossRef]
- Madeo, R.C.B.; Lima, C.A.M.; Peres, S.M. Gesture Unit Segmentation Using Support Vector Machines: Segmenting Gestures from Rest Positions. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 46–52. [Google Scholar]
- Allen, J.; Zheng, D.; Kyriacou, P.A.; Elgendi, M. Photoplethysmography (PPG): State-of-the-Art Methods and Applications. Physiol. Meas. 2021, 42, 100301. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and Its Application in Clinical Physiological Measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Chiarelli, A.M.; Cardone, D.; Filippini, C.; Rinella, S.; Massimino, S.; Bianco, F.; Bucciarelli, V.; Vinciguerra, V.; Fallica, P.; et al. Prediction of State Anxiety by Machine Learning Applied to Photoplethysmography Data. PeerJ 2021, 9, e10448. [Google Scholar] [CrossRef] [PubMed]
- Longmore, S.K.; Lui, G.Y.; Naik, G.; Breen, P.P.; Jalaludin, B.; Gargiulo, G.D. A Comparison of Reflective Photoplethysmography for Detection of Heart Rate, Blood Oxygen Saturation, and Respiration Rate at Various Anatomical Locations. Sensors 2019, 19, 1874. [Google Scholar] [CrossRef] [PubMed]
- Weiler, D.T.; Villajuan, S.O.; Edkins, L.; Cleary, S.; Saleem, J.J. Wearable Heart Rate Monitor Technology Accuracy in Research: A Comparative Study between PPG and ECG Technology. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1292–1296. [Google Scholar] [CrossRef]
- Akbar, F.; Mark, G.; Pavlidis, I.; Gutierrez-Osuna, R. An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work. Sensors 2019, 19, 3766. [Google Scholar] [CrossRef]
- Perpetuini, D.; Di Credico, A.; Filippini, C.; Izzicupo, P.; Cardone, D.; Chiacchiaretta, P.; Ghinassi, B.; Di Baldassarre, A.; Merla, A. Is It Possible to Estimate Average Heart Rate from Facial Thermal Imaging? Eng. Proc. 2021, 8, 10. [Google Scholar] [CrossRef]
- Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A. Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging. Front. Cardiovasc. Med. 2022, 9, 893374. [Google Scholar] [CrossRef] [PubMed]
- Di Credico, A.; Petri, C.; Cataldi, S.; Greco, G.; Suarez-Arrones, L.; Izzicupo, P. Heart Rate Variability, Recovery and Stress Analysis of an Elite Rally Driver and Co-Driver during a Competition Period. Sci. Prog. 2024, 107, 00368504231223034. [Google Scholar] [CrossRef] [PubMed]
- Hamatta, H.S.; Banerjee, K.; Anandaram, H.; Shabbir Alam, M.; Deva Durai, C.A.; Parvathi Devi, B.; Palivela, H.; Rajagopal, R.; Yeshitla, A. Genetic Algorithm-Based Human Mental Stress Detection and Alerting in Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 4086213. [Google Scholar] [CrossRef]
- Huttunen, R.; Leppänen, T.; Duce, B.; Oksenberg, A.; Myllymaa, S.; Töyräs, J.; Korkalainen, H. Assessment of Obstructive Sleep Apnea-Related Sleep Fragmentation Utilizing Deep Learning-Based Sleep Staging from Photoplethysmography. Sleep 2021, 44, zsab142. [Google Scholar] [CrossRef]
- Radha, M.; Fonseca, P.; Moreau, A.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; Aarts, R.M. A Deep Transfer Learning Approach for Wearable Sleep Stage Classification with Photoplethysmography. npj Digit. Med. 2021, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bacardit, J.; Griffiths, B.; Allen, J. Deep Learning Classification of Systemic Sclerosis from Multi-Site Photoplethysmography Signals. Front. Physiol. 2023, 14, 1242807. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.; Battisti, A.J.; Cheng, L.; Lin, J.; Patwardhan, A.; Venkataraman, G.S.; Athill, C.A.; Patel, N.S.; Patel, C.P.; Machado, C.E.; et al. Validation of a Deep Learning Algorithm for Continuous, Real-Time Detection of Atrial Fibrillation Using a Wrist-Worn Device in an Ambulatory Environment. J. Am. Heart Assoc. 2023, 12, e030543. [Google Scholar] [CrossRef]
- Adams, J.L.; Kangarloo, T.; Tracey, B.; O’Donnell, P.; Volfson, D.; Latzman, R.D.; Zach, N.; Alexander, R.; Bergethon, P.; Cosman, J. Using a Smartwatch and Smartphone to Assess Early Parkinson’s Disease in the WATCH-PD Study. npj Park. Dis. 2023, 9, 64. [Google Scholar] [CrossRef]
- Wouters, F.; Gruwez, H.; Vranken, J.; Vanhaen, D.; Daelman, B.; Ernon, L.; Mesotten, D.; Vandervoort, P.; Verhaert, D. The Potential and Limitations of Mobile Health and Insertable Cardiac Monitors in the Detection of Atrial Fibrillation in Cryptogenic Stroke Patients: Preliminary Results from the REMOTE Trial. Front. Cardiovasc. Med. 2022, 9, 616. [Google Scholar] [CrossRef] [PubMed]
- Antos, S.A.; Danilovich, M.K.; Eisenstein, A.R.; Gordon, K.E.; Kording, K.P. Smartwatches Can Detect Walker and Cane Use in Older Adults. Innov. Aging 2019, 3, igz008. [Google Scholar] [CrossRef]
- Wang, X.; Perry, T.A.; Caroupapoullé, J.; Forrester, A.; Arden, N.K.; Hunter, D.J. Monitoring Work-Related Physical Activity and Estimating Lower-Limb Loading: A Proof-of-Concept Study. BMC Musculoskelet. Disord. 2021, 22, 552. [Google Scholar] [CrossRef]
- Johnston, A.H.; Weiss, G.M. Smartwatch-Based Biometric Gait Recognition. In Proceedings of the 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), Arlington, VA, USA, 8–11 September 2015; pp. 1–6. [Google Scholar]
- Oluwalade, B.; Neela, S.; Wawira, J.; Adejumo, T.; Purkayastha, S. Human Activity Recognition Using Deep Learning Models on Smartphones and Smartwatches Sensor Data. arXiv 2021, arXiv:2103.03836. [Google Scholar]
- Di Credico, A.; Perpetuini, D.; Chiacchiaretta, P.; Cardone, D.; Filippini, C.; Gaggi, G.; Merla, A.; Ghinassi, B.; Di Baldassarre, A.; Izzicupo, P. The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach. Int. J. Environ. Res. Public Health 2021, 18, 10854. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 1-4614-1126-2. [Google Scholar]
- Benedek, M.; Kaernbach, C. A Continuous Measure of Phasic Electrodermal Activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef]
- Kajiwara, S. Evaluation of Driver’s Mental Workload by Facial Temperature and Electrodermal Activity under Simulated Driving Conditions. Int. J. Automot. Technol. 2014, 15, 65–70. [Google Scholar] [CrossRef]
- Filippini, C.; Di Crosta, A.; Palumbo, R.; Perpetuini, D.; Cardone, D.; Ceccato, I.; Di Domenico, A.; Merla, A. Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach. Sensors 2022, 22, 1789. [Google Scholar] [CrossRef]
- Ali, M.; Elsayed, A.; Mendez, A.; Savaria, Y.; Sawan, M. Contact and Remote Breathing Rate Monitoring Techniques: A Review. IEEE Sens. J. 2021, 21, 14569–14586. [Google Scholar] [CrossRef]
- Fusco, A.; Locatelli, D.; Onorati, F.; Durelli, G.C.; Santambrogio, M.D. On How to Extract Breathing Rate from PPG Signal Using Wearable Devices. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
- Liguori, C.; Maestri, M.; Spanetta, M.; Placidi, F.; Bonanni, E.; Mercuri, N.B.; Guarnieri, B. Sleep-Disordered Breathing and the Risk of Alzheimer’s Disease. Sleep Med. Rev. 2021, 55, 101375. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.; Gargano, M.; Formenti, D.; Bruno, D.; Ongaro, L.; Alberti, G. Breathing Training Characterization by Thermal Imaging: A Case Study. Acta Bioeng. Biomech. 2012, 14, 42–47. [Google Scholar]
- Osorio, R.S.; Gumb, T.; Pirraglia, E.; Varga, A.W.; Lu, S.; Lim, J.; Wohlleber, M.E.; Ducca, E.L.; Koushyk, V.; Glodzik, L.; et al. Sleep-Disordered Breathing Advances Cognitive Decline in the Elderly. Neurology 2015, 84, 1964–1971. [Google Scholar] [CrossRef]
- Schäfer, A.; Kratky, K.W. Estimation of Breathing Rate from Respiratory Sinus Arrhythmia: Comparison of Various Methods. Ann. Biomed. Eng. 2008, 36, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Bailey, B.P.; Iqbal, S.T. Understanding Changes in Mental Workload during Execution of Goal-Directed Tasks and Its Application for Interruption Management. ACM Trans. Comput.-Hum. Interact. 2008, 14, 21. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, H. Reliability of MUSE 2 and Tobii Pro Nano at Capturing Mobile Application Users’ Real-Time Cognitive Workload Changes. Front. Neurosci. 2022, 16, 1011475. [Google Scholar] [CrossRef]
- Wu, C.; Cha, J.; Sulek, J.; Zhou, T.; Sundaram, C.P.; Wachs, J.; Yu, D. Eye-Tracking Metrics Predict Perceived Workload in Robotic Surgical Skills Training. Hum. Factors 2020, 62, 1365–1386. [Google Scholar] [CrossRef]
- Iqbal, M.U.; Srinivasan, B.; Srinivasan, R. Multi-Class Classification of Control Room Operators’ Cognitive Workload Using the Fusion of Eye-Tracking and Electroencephalography. Comput. Chem. Eng. 2024, 181, 108526. [Google Scholar] [CrossRef]
- Patel, J.; Hasan, R. Smart Bracelets: Towards Automating Personal Safety Using Wearable Smart Jewelry. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–2. [Google Scholar]
- Rantala, I.; Colley, A.; Häkkilä, J. Smart Jewelry: Augmenting Traditional Wearable Self-Expression Displays. In Proceedings of the 7th ACM International Symposium on Pervasive Displays, Munich, Germany, 6–8 June 2018; pp. 1–8. [Google Scholar]
- Haseli, G.; Ögel, İ.Y.; Ecer, F.; Hajiaghaei-Keshteli, M. Luxury in Female Technology (FemTech): Selection of Smart Jewelry for Women through BCM-MARCOS Group Decision-Making Framework with Fuzzy ZE-Numbers. Technol. Forecast. Soc. Chang. 2023, 196, 122870. [Google Scholar] [CrossRef]
- Rupprecht, P.; Kueffner-McCauley, H.; Trimmel, M.; Schlund, S. Adaptive Spatial Augmented Reality for Industrial Site Assembly. Procedia CIRP 2021, 104, 405–410. [Google Scholar] [CrossRef]
- Ciccarelli, M.; Papetti, A.; Scoccia, C.; Menchi, G.; Mostarda, L.; Palmieri, G.; Germani, M. A System to Improve the Physical Ergonomics in Human-Robot Collaboration. Procedia Comput. Sci. 2022, 200, 689–698. [Google Scholar] [CrossRef]
- Beggiato, M.; Hartwich, F.; Krems, J. Physiological Correlates of Discomfort in Automated Driving. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 445–458. [Google Scholar] [CrossRef]
- Biswas, P.; Prabhakar, G. Detecting Drivers’ Cognitive Load from Saccadic Intrusion. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 63–78. [Google Scholar] [CrossRef]
- Li, W.-C.; Horn, A.; Sun, Z.; Zhang, J.; Braithwaite, G. Augmented Visualization Cues on Primary Flight Display Facilitating Pilot’s Monitoring Performance. Int. J. Hum.-Comput. Stud. 2020, 135, 102377. [Google Scholar]
- Liang, C.; Liu, S.; Wanyan, X.; Liu, C.; Xiao, X.; Min, Y. Effects of Input Method and Display Mode of Situation Map on Early Warning Aircraft Reconnaissance Task Performance with Different Information Complexities. Chin. J. Aeronaut. 2023, 36, 105–114. [Google Scholar] [CrossRef]
- Khamaisi, R.K.; Brunzini, A.; Grandi, F.; Peruzzini, M.; Pellicciari, M. UX Assessment Strategy to Identify Potential Stressful Conditions for Workers. Robot. Comput.-Integr. Manuf. 2022, 78, 102403. [Google Scholar]
- Peruzzini, M.; Grandi, F.; Pellicciari, M.; Campanella, C.E. A Mixed-Reality Digital Set-up to Support Design for Serviceability. Procedia Manuf. 2018, 17, 499–506. [Google Scholar] [CrossRef]
- Peruzzini, M.; Grandi, F.; Pellicciari, M. How to Analyse the Workers’ Experience in Integrated Product-Process Design. J. Ind. Inf. Integr. 2018, 12, 31–46. [Google Scholar] [CrossRef]
- Viegas, C.; Lau, S.-H.; Maxion, R.; Hauptmann, A. Towards Independent Stress Detection: A Dependent Model Using Facial Action Units. In Proceedings of the 2018 International Conference on Content-Based Multimedia Indexing (CBMI), La Rochelle, France, 4–6 September 2018; pp. 1–6. [Google Scholar]
- Pongsakornsathien, N.; Gardi, A.; Lim, Y.; Sabatini, R.; Kistan, T.; Ezer, N. Performance Characterisation of Wearable Cardiac Monitoring Devices for Aerospace Applications. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Turin, Italy, 19–21 June 2019; pp. 76–81. [Google Scholar]
- Ciccarelli, M.; Papetti, A.; Germani, M.; Leone, A.; Rescio, G. Human Work Sustainability Tool. J. Manuf. Syst. 2022, 62, 76–86. [Google Scholar] [CrossRef]
- Ciccarelli, M.; Papetti, A.; Germani, M. Exploring How New Industrial Paradigms Affect the Workforce: A Literature Review of Operator 4.0. J. Manuf. Syst. 2023, 70, 464–483. [Google Scholar] [CrossRef]
- Smith, J.B.; Baskaran, P.; Adams, J.A. Decomposed Physical Workload Estimation for Human-Robot Teams. In Proceedings of the 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS), Orlando, FL, USA, 17–19 November 2022; pp. 1–6. [Google Scholar]
- Dell’Agnola, F.; Jao, P.-K.; Arza, A.; Chavarriaga, R.; Millán, J.d.R.; Floreano, D.; Atienza, D. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions with Drones. IEEE J. Biomed. Health Inform. 2022, 26, 4751–4762. [Google Scholar] [CrossRef]
- Masinelli, G.; Forooghifar, F.; Arza, A.; Atienza, D.; Aminifar, A. Self-Aware Machine Learning for Multimodal Workload Monitoring during Manual Labor on Edge Wearable Sensors. IEEE Des. Test 2020, 37, 58–66. [Google Scholar] [CrossRef]
- Zanetti, R.; Arza, A.; Aminifar, A.; Atienza, D. Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices. IEEE Trans. Biomed. Eng. 2021, 69, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Pongsakornsathien, N.; Lim, Y.; Gardi, A.; Hilton, S.; Planke, L.; Sabatini, R.; Kistan, T.; Ezer, N. Sensor Networks for Aerospace Human-Machine Systems. Sensors 2019, 19, 3465. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The Origin of Extracellular Fields and Currents—EEG, ECoG, LFP and Spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Kirschstein, T.; Köhling, R. What Is the Source of the EEG? Clin. EEG Neurosci. 2009, 40, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional Near-infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.G.; Nummenmaa, L. Perceptual and Affective Mechanisms in Facial Expression Recognition: An Integrative Review. Cogn. Emot. 2016, 30, 1081–1106. [Google Scholar] [CrossRef]
- Fathima, A.; Vaidehi, K. Review on Facial Expression Recognition System Using Machine Learning Techniques. In Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE); Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 608–618. [Google Scholar]
- Abdullah, S.M.S.; Abdulazeez, A.M. Facial Expression Recognition Based on Deep Learning Convolution Neural Network: A Review. J. Soft Comput. Data Min. 2021, 2, 53–65. [Google Scholar]
- Ranchet, M.; Morgan, J.C.; Akinwuntan, A.E.; Devos, H. Cognitive Workload across the Spectrum of Cognitive Impairments: A Systematic Review of Physiological Measures. Neurosci. Biobehav. Rev. 2017, 80, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Muñoz, A.R.; Mouratille, D.; Matton, N.; Causse, M.; Rouillard, Y.; El-Yagoubi, R. Cardiovascular Correlates of Emotional State, Cognitive Workload and Time-on-Task Effect during a Realistic Flight Simulation. Int. J. Psychophysiol. 2018, 128, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Taheri Gorji, H.; Wilson, N.; VanBree, J.; Hoffmann, B.; Petros, T.; Tavakolian, K. Using Machine Learning Methods and EEG to Discriminate Aircraft Pilot Cognitive Workload during Flight. Sci. Rep. 2023, 13, 2507. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Korn, B. A Tripartite Concept of a Remote-Copilot Center for Commercial Single-Pilot Operations. In Proceedings of the AIAA Information Systems-AIAA Infotech@ Aerospace, Grapevine, TX, USA, 9–13 January 2017; p. 0064. [Google Scholar]
- Cardone, D.; Perpetuini, D.; Filippini, C.; Mancini, L.; Nocco, S.; Tritto, M.; Rinella, S.; Giacobbe, A.; Fallica, G.; Ricci, F.; et al. Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals. Sensors 2022, 22, 7300. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.M.; Hancock, G.M.; Marlow, S.L.; Stowers, K.; Salas, E. Cardiac Measures of Cognitive Workload: A Meta-Analysis. Hum. Factors 2019, 61, 393–414. [Google Scholar] [CrossRef]
- Guastello, S.J. Cognitive Workload and Fatigue in Financial Decision Making; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 4-431-55312-6. [Google Scholar]
- Beaty, R.E.; Benedek, M.; Silvia, P.J.; Schacter, D.L. Creative Cognition and Brain Network Dynamics. Trends Cogn. Sci. 2016, 20, 87–95. [Google Scholar] [CrossRef]
Authors | Objective | Signals Acquired |
---|---|---|
Rupprecht et al. [74] | Combination of a dynamic projection system with visual detection of human location and gestures in a spacious work area. | Gesture recognition through high-resolution RGB-camera and real-time object recognition algorithm YOLOv3. |
Ciccarelli et al. [75] | Development of a system to avoid uncomfortable and unsafe postures | Posture recognition through Intel RealSense technologies and the Cubemos Skeleton Tracking SDK. |
Beggiato et al. [76] | Investigation of factors that influence comfort and discomfort in automated driving. | HR, EDA, pupil diameter, and eye blink rate |
Biswas and Prabhakar [77] | Investigation of the possibility of identifying drivers’ cognitive load and immediate awareness of emerging road risks via the use of Saccadic Intrusion. | Eye gaze and saccadic intrusion through Tobii TX-2 |
Li et al. [78] | Evaluation of human-computer interactions on a augmented visualization Primary Flight Display (PFD) compared with the traditional PFD. | Pupil Labs eye tracker to assess pupil position and dimensions. |
Liang et al. [79] | An assessment of how the input method and display mode of the situation map impact the performance of Early Warning Aircraft (EWA) during reconnaissance tasks, considering varying levels of information complexity. | Tobii Glasses 2 for eye movement recording and HRV through a PPG device. |
Khamaisi et al. [80] | Assessment of the users experience of workers in manufacturing sites. | • HTC Vive Tracker suite, to evaluate the human body angles; • Empatica E4 wristband, to record HR and EDA; • Zephyr Bioharness 3 thoracic band, to collect RR intervals; • HTC Vive Pro Eye headset equipped with Tobii eye tracking system. |
Peruzzini et al. [81] | Development of a mixed reality setup where operators are digitized and monitored to evaluate both physical and cognitive ergonomics. | • Siemens JACK to collect the users’ postures and movements in the real space; • Tobii Glasses 2 to collect the users’ eye fixations; • Zephyr Bioharness to collect HR, HRV, breathing rate (BR), acceleration (VMU), and posture. |
Peruzzini et al. [82] | A procedure to employ digital technologies to enhance product-process design to analyse the workers behaviours | The setup consists of a video camera used to replicate the virtual environment and generate a digital replica of the workplace. Additionally, an advanced eye tracking system (specifically, the Glasses 2 by Tobii) is employed to analyze the precise eye fixation of real users. Furthermore, a multi-parametric wearable sensor is utilized to monitor real-time physiological parameters. |
Authors | Objective | Signals Acquired | AI |
---|---|---|---|
Zanetti et al. [90] | The study focuses on building a cognitive workload monitoring (CWM) solution to assess the drone operators’ CW level during a simulated search and rescue mission. | EEG (Biosemi ActiveTwo system) | Random Forest |
Smith et al. [87] | Development of models for estimating grossand fine motor, and tactileworkload. | • The BioharnessTM to collect heart rate, respiration rate, and postural magnitude; • Xsens MTw Awinda to measure participant’s body pose; • two Myo armbands, each equipped with 8-channels surface EMG and a forearm inertial metrics. | Several ML algorithms not specified |
Dell’Agnola et al. [88] | ML algorithm for real-time cognitive workload monitoring of drones rescue operators. | Respiration, ECG, PPG, and skin temperature. | A new weighted-learning method for Support Vector Machine (SVM) |
Pongsakornsathien et al. [84] | Development of a Cognitive Human-Machine Interfaces and Interactions (CHMI2) framework. | ECG through the BH system. | Adaptive Neuro-Fuzzy Inference System (ANFIS) |
Ciccarelli et al. [85] | The supervision of operator’s tasks and the execution of remedial measures to ensure social sustainability in the workplace. | These data are acquired by IoT devices (i.e., chest band, wristband, smart glasses, inertial measurement units). | machine learning algorithms as STAI and NASA-TLX |
Ciccarelli et al. [86] | A systematic review analyzing the occupational risks of the workers and the possible solutions. | wearable sensors to evaluate mental and cognitive workload collecting physiological parameters such as heart rate, Heart rate Variability, Respiratory rate (RR), Electrodermal Activity (EDA), electroencephalography (EEG) and pupillometry. | use of AI technologie, such as machine learning (ML) and computer vision |
Viegas et al. [83] | A method able to assess mental stress through facial expressions detected only on video | 17 Action Units (AUs) from upper-level to lower-level face frame-wise have been extracted. | Different classifiers were used: Random Forest, LDA, Gaussian Naive Bayes and Decision Tree. |
Pongsakornsathien et al. [91] | Advances in sensor networks for aerospace cyber-physical systems are discussed, focusing on Cognitive Human-Machine Interfaces and Interactions implementations. | Eye fixations, blink rate, saccades, pupil diameter, visual entropy and dwell time; neuroimaging technologies | Neural Fuzzy Systems and networks, artificial neural networks, convolutional neural networks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iarlori, S.; Perpetuini, D.; Tritto, M.; Cardone, D.; Tiberio, A.; Chinthakindi, M.; Filippini, C.; Cavanini, L.; Freddi, A.; Ferracuti, F.; et al. An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors. BioMedInformatics 2024, 4, 1155-1173. https://doi.org/10.3390/biomedinformatics4020064
Iarlori S, Perpetuini D, Tritto M, Cardone D, Tiberio A, Chinthakindi M, Filippini C, Cavanini L, Freddi A, Ferracuti F, et al. An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors. BioMedInformatics. 2024; 4(2):1155-1173. https://doi.org/10.3390/biomedinformatics4020064
Chicago/Turabian StyleIarlori, Sabrina, David Perpetuini, Michele Tritto, Daniela Cardone, Alessandro Tiberio, Manish Chinthakindi, Chiara Filippini, Luca Cavanini, Alessandro Freddi, Francesco Ferracuti, and et al. 2024. "An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors" BioMedInformatics 4, no. 2: 1155-1173. https://doi.org/10.3390/biomedinformatics4020064
APA StyleIarlori, S., Perpetuini, D., Tritto, M., Cardone, D., Tiberio, A., Chinthakindi, M., Filippini, C., Cavanini, L., Freddi, A., Ferracuti, F., Merla, A., & Monteriù, A. (2024). An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors. BioMedInformatics, 4(2), 1155-1173. https://doi.org/10.3390/biomedinformatics4020064