Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models
Abstract
:1. Introduction
2. Related Works
3. Detection Model Design and Development
3.1. Dataset for Model Development
3.2. Feature Selection and Processing
3.3. Detection Model Development and Training
3.4. Detection Model Performance Evaluation
4. User Application Software Development
4.1. User Application System
4.2. User Data Management
5. Experiments and Results
5.1. Blind Tests Simulation Experiment
5.2. Clinical Testing Experiment
5.3. Comparative Analysis of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majithia, V.; Geraci, S.A. Rheumatoid arthritis: Diagnosis and management. Am. J. Med. 2007, 120, 936–939. [Google Scholar] [CrossRef]
- Deane, K.D.; Demoruelle, M.K.; Kelmenson, L.B.; Kuhn, K.A.; Norris, J.M.; Holers, V.M. Genetic and environmental risk factors for rheumatoid arthritis. Clin. Rheumatol. 2017, 31, 3. [Google Scholar] [CrossRef]
- Hügle, M.; Omoumi, P.; Van Laar, J.M.; Boedecker, J.; Hügle, T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol. Adv. Pract. 2020, 4, rkaa005. [Google Scholar] [CrossRef]
- Kumar, P.; Alok, R.; Das, S.K.; Srivastava, R.; Agarwal, G.G. Distribution of rheumatological diseases in rural and urban areas: An adapted COPCORD Stage I Phase III survey of Lucknow district in north India. Int. J. Rheum. Dis. 2018, 21, 1894–1899. [Google Scholar] [CrossRef]
- Hazes, J.M.W.; Luime, J.J. The epidemiology of early inflammatory arthritis. Nat. Review. Rheumatol. 2011, 7, 381–390. [Google Scholar] [CrossRef]
- da Mota, L.M.H.; dos Santos Neto, L.L.; de Carvalho, J.F.; Pereira, I.A.; Burlingame, R.; Ménard, H.A.; Laurindo, I.M.M. The presence of anti-citrullinated protein antibodies (ACPA) and rheumatoid factor on patients with rheumatoid arthritis (RA) does not interfere with the chance of clinical remission in a follow-up of 3 years. Rheumatol. Int. 2012, 32, 3807–3812. [Google Scholar] [CrossRef]
- Agrawal, S.; Misra, R.; Aggarwal, A. Autoantibodies in rheumatoid arthritis: Association with severity of disease in established RA. Clin. Rheumatol. 2007, 26, 201–204. [Google Scholar] [CrossRef]
- Shamir, L.; Ling, S.M.; Scott, W.W., Jr.; Bos, A.; Orlov, N. Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 2009, 56, 407–415. [Google Scholar] [CrossRef]
- Kourilovitch, M.; Galarza-Maldonado, C.; Ortiz-Prado, E. Diagnosis and classification of rheumatoid arthritis. J. Autoimmun. 2014, 48–49, 26–30. [Google Scholar] [CrossRef]
- Mills, G.A.; Pomary, P.; Togo, E.; Sowah, R.A. Detection and management of P2P traffic in networks using artificial neural networks. J. Netw. Syst. Manag. 2022, 30, 26. [Google Scholar] [CrossRef]
- Alam, A.; Ahamad, M.K.; Mohammed Aarif, K.O.; Anwar, T. Detection of rheumatoid arthritis using CNN by transfer learning. In Artificial Intelligence and Autoimmune Diseases. Studies in Computational Intelligence; Raza, K., Singh, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1133. [Google Scholar] [CrossRef]
- Hassanzadeh, T.; Shamonin, D.P.; Li, Y.; Krijbolder, D.I.; Reijnierse, M.; van der Helm-van Mil, A.H.M.; Stoel, B.C. A deep learning-based comparative MRI model to detect inflammatory changes in rheumatoid arthritis. Biomed. Signal Process. Control 2024, 88, 105612. [Google Scholar] [CrossRef]
- Khatoon, M.M.; Singh, B.R.N.; Harshita, M.S.; Sreeja, K.; Reddy, S.S.; Latha, J.S. Automated diagnosis of rheumatoid arthritis based on CNN. In Proceedings of the International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 25–26 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Sakaria, S.; Jain, S.; Rana, M.K. Rheumatoid arthritis predictor using ML techniques and explainable AI. In Proceedings of the 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballar, India, 29–30 April 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Sundaramurthy, S.C.; Kshirsagar, P. Prediction and classification of rheumatoid arthritis using ensemble machine learning approaches. In Proceedings of the 2020 International Conference on Decision Aid Sciences Application (DASA), Sakheer, Bahrain, 8–9 November 2020; pp. 17–21. [Google Scholar] [CrossRef]
- Khan, A.; Usman, M. Early diagnosis of Alzheimer’s disease using machine learning techniques: A review paper. In Proceedings of the 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), IEEE, Lisbon, Portugal, 12–14 November 2015; Volume 1, pp. 380–387. [Google Scholar]
- Li, Y.; Hassanzadeh, T.; Shamonin, D.P.; Reijnierse, M.; van der Helm-van Mil, A.H.M.; Stoel, B.C. Rheumatoid arthritis classification and prediction by consistency-based deep learning using extremity MRI scans. Biomed. Signal Process. Control 2024, 91, 105990. [Google Scholar] [CrossRef]
- Yoo, J.; Lim, M.K.; Ihm, C.; Choi, E.S.; Kang, M.S. A study on prediction of rheumatoid arthritis using machine learning. Int. J. Appl. Eng. Res. 2017, 12, 9858–9862. [Google Scholar]
- Li, Y.; Zhao, L. Application of machine learning in rheumatic immune diseases. J. Healthc. Eng. 2022, 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, Y.; Jiang, C.; Zhao, L.; Zhang, X.; Lipsky, P.E. Machine learning in rheumatic diseases. Clin. Rev. Allergy Immunol. 2021, 60, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Tagkopoulos, I. Application of machine learning in rheumatic disease research. Korean J. Intern. Med. 2019, 34, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, F.; Lapucci, M.; Olivieri, G.; Sortino, A.; Natalucci, F.; Spinelli, F.R.; Alessandri, C.; Sciandrone, M.; Conti, F. Can machine learning models support physicians in systemic lupus erythematosus diagnosis? Results from a monocentric cohort. Jt. Bone Spine 2022, 89, 105292. [Google Scholar] [CrossRef]
- Bas, S.; Genevay, S.; Meyer, O.; Gabay, C. Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis. Rheumatology 2003, 42, 677–680. [Google Scholar] [CrossRef]
- Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Kay, J.; Upchurch, K.S. ACR/EULAR 2010 Rheumatoid Arthritis classification criteria. Rheumatology 2012, 51, vi5–vi9. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Nowroozi, A.; Rezaei, N. Artificial intelligence in rheumatoid arthritis: Current status and future perspectives: A state-of-the-art review. Rheumatol. Ther. 2022, 9, 1249–1304. [Google Scholar] [CrossRef]
- Orange, D.E.; Agius, P.; DiCarlo, E.F.; Robine, N.; Geiger, H.; Szymonifka, J.; McNamara, M.; Cummings, R.; Andersen, K.M.; Mirza, S.; et al. Identification of three rheumatoid arthritis subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis Rheumatol. 2018, 70, 690–701. [Google Scholar] [CrossRef]
- Jamian, L.; Wheless, L.; Crofford, L.J.; Barnado, A. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in electronic health record. Arthritis Res. Ther. 2019, 21, 305. [Google Scholar] [CrossRef]
- Jorge, A.; Castro, V.M.; Barnado, A.; Gainer, V.; Hong, C.; Cai, T.; Carroll, R.; Denny, J.C.; Crofford, L.; Constenbader, K.H.; et al. Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms. Semin. Arthritis Rheum. 2019, 49, 84–90. [Google Scholar] [CrossRef]
- Norgeot, B.; Glicksberg, B.S.; Trupin, L.; Lituiev, D.; Gianfrancesco, M.; Oskotsky, B.; Schmajuk, G.; Yazdany, J.; Butte, A.J. Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA Netw. Open 2019, 2, e190606. [Google Scholar] [CrossRef]
- Elkin, P.L.; Schlegel, D.R.; Anderson, M.; Komm, J.; Ficheur, G.; Bisson, L. Artificial Intelligence: Bayesian versus Heuristic method for diagnostic decision support. Appl. Clin. Inform. 2018, 9, 432–439. [Google Scholar] [CrossRef]
- Dang, S.D.H.; Allison, L. Using deep learning to assign rheumatoid arthritis scores. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science, Las Vegas, NV, USA, 11–13 August 2020; pp. 399–402. [Google Scholar] [CrossRef]
- Vodencarevic, A.; Tascilar, K.; Hartmann, F.; Reiser, M.; Hueber, A.J.; Haschka, J.; Bayat, S.; Meinderink, T.; Knitza, J.; Mendez, L.; et al. Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs. Arthritis Res. Ther. 2021, 23, 67. [Google Scholar] [CrossRef]
- Zhou, S.M.; Fernandez-Gutierrez, F.; Kennedy, J.; Cooksey, R.; Atkinson, M.; Denaxas, S.; Siebert, S.; Dixon, W.G.; O’Neill, T.W.; Choy, E.; et al. Defining disease phenotypes in primary care electronic health records by a machine learning approach: A case study in identifying rheumatoid arthritis. PLoS ONE 2016, 11, e0154515. [Google Scholar] [CrossRef]
- Gornale, S.S.; Patravali, P.U.; Manza, R.R. Detection of osteoarthritis using knee x-ray image analyses: A machine vision based approach. Int. J. Comput. Appl. 2016, 145, 20–26. [Google Scholar] [CrossRef]
- Walsh, J.A.; Rozycki, M.; Yi, E.; Park, Y. Application of machine learning in the diagnosis of axial spondyloarthritis. Current Opin. Rheumatol. 2019, 31, 362–367. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, S.; Chen, C.; Qiao, M.; Zhang, W.; Shah, A.; Bai, W.; Arcucci, R. M-FLAG: Medical vision-language pre-training with frozen language models and latent space geometry optimization. arXiv 2023, arXiv:2307.08347. [Google Scholar]
- Saleem, M.; Farid, M.S.; Saleem, S.; Khan, M.H. X-ray image analysis for automated knee osteoarthritis detection. SIViP 2020, 14, 1079–1087. [Google Scholar] [CrossRef]
- Ho, S.; Elamvazuthi, I.; Lu, C.K. Classification of rheumatoid arthritis using machine learning algorithms. In Proceedings of the 2018 IEEE 4th International Symposium in Robotics and Manufacturing Automation (ROMA), Perambalur, India, 10–12 December 2018; pp. 345–350. [Google Scholar]
- Hassan, R.; Faruqui, H.; Alquraa, R.; Eissa, A.; Aishaiki, F.; Cheikh, M. Classification criteria and clinical guidelines for rheumatic diseases. In Skills in Rheumatology [Internet]; Springer: Singapore, 2021; Chapter 25. [Google Scholar] [CrossRef]
- Korte, S.M.; Straub, R.H. Fatigue in inflammatory rheumatic disorders: Pathophysiological mechanisms. Rheumatology 2019, 58 (Suppl. 5), v35–v50. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J.L. ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representation (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Sowah, R.A.; Agebure, M.A.; Mills, G.A.; Koumadi, K.M.; Fiawoo, S.Y. New cluster undersampling technique for class imbalance learning. Int. J. Mach. Learn. Comput. 2016, 9, 205–214. [Google Scholar] [CrossRef]
- Kaur, S.; White, S.; Bartold, M. Periodontal disease as a risk factor for rheumatoid arthritis: A systematic review. JBI Libr. Syst. Rev. 2012, 10, 1–12. [Google Scholar] [CrossRef]
- Zhang, P.; Walker, M.A.; White, J.; Schmidt, D.C.; Lenz, G. Metrics for assessing blockchain-based healthcare decentralized apps. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications, and Services, Healthcom, Dalian, China, 12–15 October 2017; pp. 1–4. [Google Scholar]
- Da Conceição, A.F.; Da Silva, F.S.C.; Rocha, V.; Locoro, A.; Barguil, J.M. Electronic Health Records using Blockchain Technology. Cornell University. April 2018. Available online: https://arxiv.org/abs/1804.10078v1 (accessed on 24 April 2024).
- Üreten, K.; Maraş, H.H. Automated classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs with deep learning methods. J. Digit. Imaging 2022, 35, 193–199. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Alansari, A.; Alkhorasani, H.; Alsubaii, M.; Sakloua, R.; Alzahrani, R.; Alsaleem, Y.; Almutairi, M.; Alhamad, N.; Alyami, A.; et al. A novel ensemble-based technique for the preemptive diagnosis of rheumatoid arthritis disease in the eastern province of Saudi Arabia using clinical data. Comput. Math. Methods Med. 2022, 2022, 2339546. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, M.; Zhao, S.; Yan, Y. Machine learning for diagnosis of systemic lupus erythematosus: A systematic review and meta-analysis. Comput. Intell. Neurosci. 2022, 2022, 7167066. [Google Scholar] [CrossRef]
Month | No of Cases | % of Males | % of Females | Age Range |
---|---|---|---|---|
January | 138 | 11.59 | 88.41 | 20–80 |
February | 162 | 16.67 | 83.33 | 3–72 |
March | 213 | 10.80 | 89.20 | 20–64 |
April | 183 | 11.48 | 88.52 | 9–80 |
May | 182 | 9.89 | 90.11 | 22–68 |
June | 254 | 6.69 | 93.31 | 21–72 |
July | 178 | 14.04 | 85.96 | 19–72 |
Disorders | No of Cases | % Distribution | Age Range |
---|---|---|---|
RA disorder | 452 | 34.50 | 18–70 |
OA disorder | 36 | 2.75 | 45–80 |
SLE disorder | 500 | 38.17 | 18–49 |
Other disorders | 322 | 24.58 | 9–80 |
Age Range | No of Records | % Distribution |
---|---|---|
<20 | 7000 | 7.00 |
20–40 | 43,000 | 43.00 |
41–60 | 30,000 | 30.00 |
61–70 | 15,000 | 15.00 |
71–80 | 5000 | 5.00 |
Disorders | No of Records | % Distribution |
---|---|---|
RA disorder | 34,500 | 34.50 |
OA disorder | 2750 | 2.75 |
SLE disorder | 38,170 | 38.17 |
Unknown order | 24,580 | 24.58 |
Record No. | Gender | Wrist Swelling | Elbow Swelling | Joint Locking | History of RA | Fever | Knee Swelling |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
6 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
10 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Code | Feature Name | Code | Feature Name | Code | Feature Name |
---|---|---|---|---|---|
F1 | Pain in knuckle joint | F2 | Swelling around elbows | F3 | Pain in wrist joints |
F4 | Swelling around the knees | F5 | Pain in feet joints | F6 | Facial swelling |
F7 | Pain in shoulder joints | F8 | Redness of the skin around swelling | F9 | Pain in elbows |
F10 | Symmetrical swelling | F11 | Pain in knees | F12 | Reduced range of movement |
F13 | Pain in ankles | F14 | Joint locking | F15 | Pain in the hips |
F16 | Functional difficulty | F17 | Pain in the chest | F18 | Stiffness for more than an hour |
F19 | Pain symmetrical | F20 | Rashes or physical skin changes | F21 | Duration of pain more than 6 weeks |
F22 | Mouth sores | F23 | Pain spreads to other parts of the body | F24 | Hair loss |
F25 | Time of day worsens or improves | F26 | Skin lesions worsen with sun exposure | F27 | Knuckle joint swelling |
F28 | History of trauma to joints | F29 | Swelling around the wrist | F30 | Bony outgrowth in fingers |
F31 | Swelling in feet | F32 | OA in the medical records | F33 | Swelling around shoulder joints |
F34 | Family history of OA | F35 | SLE in the medical records | F36 | Autoimmune condition in records |
F37 | Family history of SLE | F38 | Family history of RA | F39 | Fatigue |
F40 | Smoking | F41 | Fever | F42 | Gender |
F43 | Weight loss | F44 | Age | F45 | RA in the medical records |
Parameter Description | Parameter Range |
---|---|
Number of input layer neurons | 45 |
Number of output layer neurons | 5 |
Number of hidden layers | Varied |
Number of neurons in hidden layers | Varied |
Learning rate | 0.01 to 0.9 |
Momentum factor | 0.1 to 0.9 |
Batch size Beta parameters (β1, β2) Tolerance parameter (δ) Loss function | 32 0.90–0.999 10−8 Binary/Categorical cross entropy |
Number of epochs | 2000 |
Layers | Neurons (in Hidden Layers) | Accuracy (%) | Execution Time (s) |
---|---|---|---|
1 | L1 = 5 | 95.45 | 5.07 |
1 | L1 = 10 | 97.38 | 5.36 |
1 | L1 = 15 | 97.25 | 5.23 |
1 | L1 = 20 | 97.41 | 5.25 |
2 | L1 = 10, L2 = 5 | 96.01 | 5.68 |
2 | L1 = 10, L2 = 10 | 96.12 | 5.57 |
2 | L1 = 10, L2 = 15 | 97.48 | 5.60 |
2 | L1 = 10, L2 = 20 | 95.48 | 5.65 |
3 | L1 = 10, L2 = 5, L3 = 10 | 93.30 | 6.05 |
3 | L1 = 10, L2 = 10, L3 = 15 | 94.40 | 6.23 |
3 | L1 = 10, L2 = 15, L3 = 20 | 96.25 | 6.10 |
3 | L1 = 10, L2 = 20, L3 = 20 | 96.43 | 5.61 |
Tests | ACC (%) | PRE (%) | REC (%) | F1-Score (%) |
---|---|---|---|---|
Test 1 | 97.452 | 97.452 | 96.933 | 97.193 |
Test 2 | 97.458 | 97.458 | 98.567 | 98.008 |
Test 3 | 97.460 | 97.460 | 98.559 | 98.006 |
Test 4 | 97.636 | 97.636 | 93.121 | 95.325 |
Average | 97.502 | 97.502 | 96.795 | 97.133 |
Features | Test 1 | Test 2 | Test 3 | Features | Test 1 | Test 2 | Test 3 |
---|---|---|---|---|---|---|---|
F1 | 0 | 1 | 0 | F24 | 0 | 0 | 0 |
F2 | 0 | 0 | 1 | F25 | 0 | 1 | 0 |
F3 | 1 | 1 | 0 | F26 | 0 | 0 | 1 |
F4 | 0 | 0 | 1 | F27 | 0 | 1 | 0 |
F5 | 1 | 1 | 1 | F28 | 0 | 0 | 0 |
F6 | 0 | 0 | 0 | F29 | 1 | 0 | 1 |
F7 | 0 | 1 | 0 | F30 | 0 | 0 | 0 |
F8 | 0 | 0 | 0 | F31 | 1 | 1 | 1 |
F9 | 0 | 1 | 1 | F32 | 0 | 0 | 0 |
F10 | 0 | 0 | 0 | F33 | 0 | 0 | 0 |
F11 | 1 | 0 | 0 | F34 | 0 | 0 | 0 |
F12 | 0 | 0 | 1 | F35 | 0 | 0 | 1 |
F13 | 1 | 0 | 1 | F36 | 0 | 0 | 1 |
F14 | 0 | 0 | 0 | F37 | 0 | 0 | 0 |
F15 | 0 | 0 | 0 | F38 | 0 | 1 | 0 |
F16 | 0 | 0 | 0 | F39 | 1 | 0 | 0 |
F17 | 1 | 0 | 0 | F40 | 0 | 0 | 1 |
F18 | 1 | 1 | 0 | F41 | 0 | 0 | 0 |
F19 | 1 | 1 | 0 | F42 | 1 | 1 | 0 |
F20 | 1 | 0 | 0 | F43 | 0 | 0 | 0 |
F21 | 1 | 1 | 0 | F44 | 2 | 3 | 4 |
F22 | 0 | 0 | 0 | F45 | 0 | 0 | 0 |
F23 | 0 | 1 | 0 |
Tests | RA Disorder | OA Disorder | SLE Disorder | Unknown Disorder |
---|---|---|---|---|
Test 1 | 0 | 0 | 0 | 1 |
Test 2 | 1 | 0 | 0 | 0 |
Test 3 | 0 | 0 | 1 | 0 |
Machine Learning Algorithms | RA (%) | OA (%) | SLE (%) | Average (%) |
---|---|---|---|---|
Decision Tree | 77.04 | 100.0 | 78.13 | 85.06 |
Random Forest | 92.25 | 99.33 | 85.63 | 92.40 |
Support Vector Machine | 99.16 | 99.60 | 99.43 | 99.40 |
Naïve Bayes | 97.45 | 89.93 | 88.29 | 91.89 |
K-Nearest Neighbour | 78.59 | 79.47 | 81.12 | 79.73 |
MLNN | 99.44 | 100.0 | 99.68 | 99.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, G.A.; Dey, D.; Kassim, M.; Yiwere, A.; Broni, K. Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models. BioMedInformatics 2024, 4, 1174-1201. https://doi.org/10.3390/biomedinformatics4020065
Mills GA, Dey D, Kassim M, Yiwere A, Broni K. Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models. BioMedInformatics. 2024; 4(2):1174-1201. https://doi.org/10.3390/biomedinformatics4020065
Chicago/Turabian StyleMills, Godfrey A., Dzifa Dey, Mohammed Kassim, Aminu Yiwere, and Kenneth Broni. 2024. "Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models" BioMedInformatics 4, no. 2: 1174-1201. https://doi.org/10.3390/biomedinformatics4020065
APA StyleMills, G. A., Dey, D., Kassim, M., Yiwere, A., & Broni, K. (2024). Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models. BioMedInformatics, 4(2), 1174-1201. https://doi.org/10.3390/biomedinformatics4020065