Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography Image †
Abstract
:1. Introduction
2. The Theoretical Farmwork
2.1. Bidimensional Empirique Multimodal Decomposition Algorithm
2.1.1. BEMD Algorithm
- Step 1.
- Initialization: ( is the original signal and is the residual).
- Step 2.
- Extraction of the kth BIMF noted (the sifting process)
- (a)
- Initialization:
- (b)
- Extract the local maxima and minima of
- (c)
- Let us calculate the upper and lower envelope by interpolating the maxima and minima of ,
- (d)
- Determine the average envelope of the two envelopes.
- (e)
- (f)
- If the stopping criterion is satisfied then otherwise return to (b) with j = j + 1.
- Step 3.
- Step 4.
- If has at least 2 extrema, return to (2) with k = k + 1 otherwise the decomposition is finished; consists of the residue of this decomposition.
2.1.2. Sifting (SD)
2.1.3. Criteria for Stopping The Decomposition
- Convergence of the screening process is assumed. Second bullet;
- Perform a certain number of iterations without verification testing of the extracted BIMF (not recommended).
- Define a stopping criterion during sifting.
Cauchy Criterion in L2 Standard
The Double Stopping Step
2.1.4. Determination of Extrema in 2D Signal
2.1.5. Interpolation
2.1.6. Application Example
2.2. Texture Analyze Methods
2.2.1. GLMC Co-Occurrence Matrices Methods
2.2.2. Statistical Attributes
3. Selection of the Most Discrimling Attributes
3.1. Slection of the Most Discrimling Attributes of Decomposed Images
3.2. Stoping Criteria
4. General Architecture of the Model (SMDA-BEMD)
- (i)
- Determine the 14 haralick attributes of all original Images healthy s in the studied database.
- (ii)
- Determining the most reduced fat using the iterative selection method
- (iii)
- Mammography image classification based on the best discriminating space for both healthy and diseased classes.
- (iv)
- Determination of the classification rate (%)
- (i)
- For each k = 1 to 5
- -
- Extract from kth BIMF of all healthy people and pathology people with cancer images in the database studied by the BEMD application.
- -
- Determine the 14 haralick attributes of all each BIMF and the Residue.
- (ii)
- Determining the most reduced fat using the iterative selection method With NT = 84 attributes.
- (iii)
- Classification of classes of healthy and pathological mammographic images according to the most discriminating space.
- (iv)
- Determination of the classification rate (%).
- (i)
- Determine the 14 haralick attributes of all healthy and cancerous Reconstructed Images in the database studied.
- (ii)
- Determining the most reduced fat using the iterative selection method
- (iii)
- Using the most discriminating space, classes of normal and abnormal mammography images are classified.
- (iv)
- Determination of the classification rate (%)
5. Experimental Results and Discussion
5.1. Data Set
5.2. Experimental Results and Discussion
Type of Images | The Interval L = |Jfs min − JfP max| |
---|---|
BIMF1 | L = |0.752 − 0.672| = 0.08 |
BIMF2 | L = |0.318 − 0.403| = 0.085 |
BIMF3 | L = |0.875 − 0.645| = 0.23 |
BIMF4 | L = |0.467 − 0.423| = 0.044 |
BIMF5 | L = |0.591 − 0.552| = 0.039 |
RSIDUE | L = |0.441 − 0.422| = 0.019 |
Reconstructed Image | L = |0.612 − 0.724| = 0.112 |
Original Image | L = | 0.602 − 0.771| = 0.169 |
- MINJfs is the minimum value of Jfs min healthy BIMFs and residue
- MAXJfp is the maximum value of Jfp max des pathology BIMFs and residue.
- -
- In terms of mass classification accuracy, methods utilizing gray level characteristics performed poorly.
- -
- The mass cannot be categorized as cancerous or benign based just on its morphology. Its sole purpose is to differentiate the bulk area from healthy breast tissue.
- -
- Because they rely on filtering schemes or basis functions, the majority of texture feature extraction approaches are non-adaptive and based on transformation methods.
- -
- The vast set of features produced by previous feature extraction methods necessitates feature selection or dimensionality reduction in our approach.
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Oliveira, J.E.; de Albuquerque Araújo, A.; Deserno, T.M. Content-based image retrieval applied to BI-RADS tissue classification inscreening mammography. World J. Radial. 2011, 3, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Trayes, K.P.; Cokenakes, S.E.H. Breast Cancer Treatment. Am. Fam. Physician 2021, 104, 171–178. [Google Scholar] [PubMed]
- Liu, C.; Cheng, S.; Chen, C.; Qiao, M.; Zhang, W.; Shah, A.; Bai, W.; Arcucci, R. M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization. Comput. Vis. Pattern Recognit. 2023, 14220, 637–647. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, C.; Zhang, M.; Fu, J.; Wang, B.; Cheng, S.; Ma, L.; Quilodrán-Casas, C.; Arcucci, R. Med-UniC: Unifying Cross-Lingual Medical Vision-Language Pre-Training by Diminishing Bias. Comput. Sci. 2024, 36. [Google Scholar] [CrossRef]
- Brunelle, F.; Brunelle, P. Intelligence artificielle et imagerie médicale: Définition, état des lieux et perspectives Artificial intelligence and medical imaging: Definition, state of the art and perspectives. Bull. L’Académie Natl. Médecine 2019, 203, 683–687. [Google Scholar] [CrossRef]
- Gautherot, M.; Yepremian, S.; Bretzner, M.; Jacques, T.; Hutt, A.; Pruvo, J.P.; Kuchcinski, G.; Lopes, R. 15 minutes pour comprendre et évaluer un logiciel d’intelligence artificielle appliquée à l’imagerie médicale (15 minutes to understand and assess an artificial intelligence-based software in medical imaging). J. D’Imag. Diagn. Interv. 2021, 4, 167–171. [Google Scholar]
- Nithya, R.; Shanthi, B. Comparative study on feature extraction method for breast cancer classification. J. Theor. Appl. Inf. Technol. 2011, 12, 220–226. [Google Scholar]
- Eltonsy, N.; Tourassi, G.; Elmaghraby, A. A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imaging 2007, 26, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Delogu, P.; Fantacci, M.E.; Kasae, P.; Retico, A. Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Comput. Biol. Med. 2007, 37, 1479–1491. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.H.; Ro, Y.M. Mass type specific sparse representation for mass classification in computer-aided detection on mammograms. Biomed. Eng. Online 2012, 12, S3. [Google Scholar] [CrossRef]
- Tralic, D.; Bozek, J.; Grgic, S. Shape analysis and classification of masses in mammographic images using neural networks. In Proceedings of the 18th International Conference on Systems, Signals and Image Processing, Sarajevo, Bosnia & Herzegovina, 16–18 June 2011. [Google Scholar]
- Bouguila, T.; Elguebaly, N. Bayesian approach for the classification of mammographic images using neural networks. In Proceedings of the 2013 Inter-national Conference on Developments in eSystems Engineering (DeSE), Abu Dhabi, United Arab Emirates, 16–18 December 2013. [Google Scholar] [CrossRef]
- Cascio, D.; Fauci, F.; Magro, R.; Raso, G.; Bellotti, R.; De Carlo, F.; Tangaro, S.; De Nunzio, G.; Quarta, M.; Forni, G.; et al. Mammogram segmentation by contour searching and mass lesions classification with neural network. IEEE Trans. Nucl. Sci. 2006, 53, 2827–2833. [Google Scholar] [CrossRef]
- Rabidas, R.; Midya, A.; Chakraborty, J. Neighborhood structural Similarity mapping for the classification of masses in mammograms. IEEE J. Biomed. Health Inf. 2018, 22, 826–834. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, M.; Aboalsamh, H.; Mathkour, H.; Bebis, G.; Zakariah, M. Optimized Gabor features for mass classification in mammography. Appl. Soft Comput. 2016, 44, 267–280. [Google Scholar] [CrossRef]
- Liu, X.; Tang, J. Mass classification in mammograms using selected Geometry and texture features, and a new SVM-based feature selection method. IEEE Syst. J. 2014, 8, 910–920. [Google Scholar] [CrossRef]
- Mudigonda, N.; Rangayyan, R.; Desautels, J. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans. Med. Imaging 2000, 19, 1032–1043. [Google Scholar] [PubMed]
- Mohanty, A.K.; Senapati, M.R.; Beberta, S.; Lenka, S.K. Texture-based features for classification of mammograms using decision tree. Neural Comput. Appl. 2012, 23, 1011. [Google Scholar] [CrossRef]
- Ioan, B.; Alexandru, G. Directional features for automatic tumor classification of mammogram images. Biomed. Signal Process. Control. 2011, 6, 370–378. [Google Scholar]
- Moayedi, F.; Azimifar, Z.; Boostani, R.; Katebi, S. Contourlet-based mammography mass classification using the SVM family. Comput. Biol. Med. 2010, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.; Britto, E.C.; Veeraputhiran, S.M. Feature extraction based on empirical mode decomposition for automatic mass classification of mammogram images. Med. Nov. Technol. Devices 2019, 1, 100004. [Google Scholar] [CrossRef]
- Nunes, J.C.; Bouaoune, Y.; Delechelle, E.; Niang, O.; Bunel, P. Image analysis by bidimensional Empirical Mode Decomposition. Image Vis. Comput. 2003, 21, 1019–1026. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, C.; Wu, J.; Liu, H. medical image fusion method based on energy classification of BEMD components. Optik 2014, 125, 146–153. [Google Scholar] [CrossRef]
- Haralick, R.; Shannungan, K.; Dinstein, I. Textural Features For Image Classification. IEEE Syst. Man. Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Vandenbroucke, N.; Macaire, L.; Postaire, J.G. Color image segmentation by supervised pixel classification in a color texture feature space. Application to soccer image segmentation. In Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00), Barcelona, Spain, 3–8 September 2000; Volume 3, pp. 625–628. [Google Scholar]
- Jain, A.; Zongker, D. Feature selection: Evaluation, application and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 19, 153–158. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Coughlin, K.; Tung, K.K. Chapter 10. Empirical Mode Decomposition of Climate Variability in the Atmospheric. In Hilbert-Huang Transform: Introduction and Applications; Huang, N., Shen, S., Eds.; World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Addai, A. Bridge Sensor Data Analysis Using the Hilbert-Huang Transform; Rapport technique; University of Illinois-Urbana Champaign: Champaign, IL, USA, 2003. [Google Scholar]
- Feldman, M.; Seibold, S. Damage diagnosis of rotors: Application of Hilbert transform and multi-hypothesis testing. J. Vib. Control. 1999, 5, 421–442. [Google Scholar] [CrossRef]
- Boudra, A.O.; Pollet, C.; Cexus, J.C.; Saidi, Z. Caractérisation des fonds marins par décomposition modale empirique. In Proceedings of the Colloque GRETSI 05, Louvain-La-Neuve, Belgium, 6–9 September 2005; pp. 559–562. [Google Scholar]
- Huang, W.; Shen, Z.; Huang, N.E.; Fung, Y.C. Engineering analysis of biological variables: An example of blood pressure over 1 day. Proc. Natl. Acad. Sci. USA 1998, 95, 4816–4821. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H. Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. Opt. Express 2011, 19, 18207–18215. [Google Scholar] [CrossRef]
- Linderhed, A. Compression by image empirical mode decomposition. In Proceedings of the IEEE International Conference on Image Processing 2005, Genoa, Italy, 11–14 September 2005; Volume 51. [Google Scholar]
- Liu, Z.; Peng, S. Boundary processing of bidimensional EMD using texture synthesis. IEEE Signal Process. Lett. 2004, 12, 33–36. [Google Scholar]
- He, Z. Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Trans. Instrum. Meas. 2013, 62, 889–904. [Google Scholar] [CrossRef]
- Benkuider, A.; Aarab, A. Content Based Image Retrieval using the Generalized Gamma Density to model BEMD’s IMF. J. Comput. 2011, 6, 1168–1174. [Google Scholar] [CrossRef]
- Benkuider, A.; Aarab, A. A New Scheme for Watermarking Images based on the BEMD. ICGST Int. J. Graph. Vis. Image Process. 2011, 11, 9–17. [Google Scholar]
- Philipp, S. Analyze de Texture Applique aux Radiographies Industrielles. Ph.D. Dissertation, These de University P. et M. Curie, Paris VI, Paris, France, 1988. [Google Scholar]
- Linderhed, A. Image empirical mode decomposition: A new tool for image processing. Adv. Adapt. Data Anal. 2009, 1, 265–294. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Gonçalvès, P. On empirical mode decomposition and its algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 1 June 2003. [Google Scholar]
- Flandrin, P.; Rilling, G.; Gonçalvés, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Beucher, S. Geodesic reconstruction, saddle zones and hierarchical segmentation. Image Anal. Stereol. 2001, 20, 137–141. [Google Scholar] [CrossRef]
- Beucher, S.; Meyer, F. The morphological approach to segmentation: The watershed transformation. In Mathematical Morphology in Image Processing; Dougherty, E., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1993; pp. 433–481. [Google Scholar]
- Hardy, R.L. Multiquadratic equations of topography and other irregular surfaces. J. Geophys. Res. 1971, 76, 1905–1915. [Google Scholar] [CrossRef]
- Chen, P.C.; Pavlidis, T. Segmentation by texture using a co-occurrence matrix and a splitand-merge algorithm. Comput. Graph. Image Process. 1979, 10, 172–182. [Google Scholar] [CrossRef]
- Marceau, D.J.; Howarth, P.J.; Dubois, J.; Gratton, D.J. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using spot imager. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513–519. [Google Scholar] [CrossRef]
- Kovalev, V.; Petrou, M. Multidimensional co-occurrence matrices for object recognition and matching. Graph. Models Image Process. 1996, 58, 187–197. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, H.W. Statistical texture features for detection of microcalcifications in digitized mammograms. IEEE Trans. Med. Imaging 1999, 18, 231–238. [Google Scholar]
- Valkealahti, K.; Oja, E. Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans Pattern Anal. Mach. Intell. 1998, 20, 90–94. [Google Scholar] [CrossRef]
- Webel, J.; Gola, J.; Britz, D.; Mücklich, F. A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels. Materials 2018, 144, 584–596. [Google Scholar]
- Haddon, J.F.; Boyce, J.F. Co-occurrence matrices for image analysis. IEEE Electron. Commun. Eng. J. 1993, 5, 71–83. [Google Scholar] [CrossRef]
- Chekouo, T.; Mohammed, S.; Rao, A. A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas. NeuroImage Clin. 2020, 28, 102–437. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bentley, P.; Mori, K.; Misawa, K.; Fujiwa, M.; Rueckert, D. Self-supervised learning for medical image analysis using image conte restoration. Med. Image Anal. 2019, 58, 101539. [Google Scholar] [CrossRef]
- Kalina, J.; Matonoha, C. A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybern. Biomed. Eng. 2020, 40, 774–786. [Google Scholar] [CrossRef]
- Kudo, M.; Sklansky, J. Comparison of algorithms that select feature for pattern classifiers. Pattern Recognit. 2000, 33, 25–41. [Google Scholar] [CrossRef]
- Zhu, Z.; Ong, Y.S.; Dash, M. Wrapper-filter feature selection algorithm using a mimetic framework. IEEE Trans. Syst. Man Cybern. 2007, 37, 70–76. [Google Scholar] [CrossRef]
- Della Pietra, S.; Della Pietra, V.; Lafferty, J. Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 380–393. [Google Scholar] [CrossRef]
Haralick Attributes | |||
---|---|---|---|
f1 | Second moment angular | f8 | Entropy of sums |
f2 | Contrast | f9 | Entropy |
f3 | Correlation | f10 | Variance of differences |
f4 | Variance | f11 | Entropy of differences |
f5 | Moment differential inverse (or homogeneity) | f12 | Correlation Information −1 |
f6 | Average sums | f13 | Correlation Information −2 |
f7 | Variance of sums | f14 | Maximum correlation coefficient |
Type of Image | Haralick Attributes | The Most Discriminating Power Jf for Healthy Images | The Most Discriminating Power Jf for Pathological Images |
---|---|---|---|
BIMF1 | f5 | 0.668 | 0.672 |
BIMF2 | f4 | 0.777 | 0.403 |
BIMF3 | f8 | 0.982 | 0.645 |
BIMF4 | f10 | 0.582 | 0.423 |
BIMF5 | f1 | 0.442 | 0.552 |
Residue | f3 | 0.222 | 0.422 |
Reconstructed Image | f11 | 0.868 | 0.724 |
Original image | f6 | 0.862 | 0.771 |
Method | SMDA-BEMD | SMDA-Reconstructed Image | SMDA-Original Image |
---|---|---|---|
AUROC | 0.991 | 0.942 | 0.83 |
Feature Extraction Methods | The Classification Rate (%) | AUC |
---|---|---|
Contourlet transform [20] | 87 | - |
Gabor wavelets [19] | 78 | 0.78 |
Geometry and texture features (G&TF) [16] | 94 | 0.9615 |
Gabor filters [15] | 93.95 | 0.948 |
tructural similarity mapping (TSM) [14] | 94.57 | 0.98 |
BMED [21] | 90 | 0.90 |
MBEMD [21] | 96.2 | 0.966 |
Proposed (SMDA-BEMD) | 98.6 | 0.991 |
SMDA- Original Image (SMDA-OI) | 82.3 | 0.83 |
SMDA-Reconstructed Image after decomposition by BEMD(SMDA-RI) | 92.8 | 0.942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazi, F.; Benkuider, A.; Ayoub, F.; Ibrahimi, K. Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography Image. BioMedInformatics 2024, 4, 1202-1224. https://doi.org/10.3390/biomedinformatics4020066
Ghazi F, Benkuider A, Ayoub F, Ibrahimi K. Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography Image. BioMedInformatics. 2024; 4(2):1202-1224. https://doi.org/10.3390/biomedinformatics4020066
Chicago/Turabian StyleGhazi, Fatima, Aziza Benkuider, Fouad Ayoub, and Khalil Ibrahimi. 2024. "Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography Image" BioMedInformatics 4, no. 2: 1202-1224. https://doi.org/10.3390/biomedinformatics4020066
APA StyleGhazi, F., Benkuider, A., Ayoub, F., & Ibrahimi, K. (2024). Selection of the Discriming Feature Using the BEMD’s BIMF for Classification of Breast Cancer Mammography Image. BioMedInformatics, 4(2), 1202-1224. https://doi.org/10.3390/biomedinformatics4020066