Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Analysis and Visualization
2.4. Feed-Forward Neural Network (FFNN)
2.4.1. ANN Model
2.4.2. Different Machine Learning Models for Comparison
Linear Regression
Decision Tree
Random Forest
2.4.3. Hydrodynamic Models (NAM)
2.5. Model Development
Criteria for Model Performance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Lu, H.; Yu, Q.; Feng, W.; Xue, Y. Change and attribution of pan evaporation throughout the Qinghai-Tibet Plateau during 1979–2017 using China meteorological forcing dataset. Int. J. Clim. 2021, 42, 1445–1459. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Teegavarapu, R.S. Floods in a Changing Climate: Extreme Precipitation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Alvisi, S.; Franchini, M. Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Model. Softw. 2011, 26, 523–537. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.S.; Han, J.; Annambhotla, S.; Bryant, S. Artificial Neural Networks for Forecasting Watershed Runoff and Stream Flows. J. Hydrol. Eng. 2005, 10, 216–222. [Google Scholar] [CrossRef]
- Chang, L.-C.; Amin, M.Z.M.; Yang, S.-N.; Chang, F.-J. Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. Water 2018, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- Campolo, M.; Soldati, A.; Andreussi, P. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 2003, 48, 381–398. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Kumar, R.; Leung, S.W. The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies 2022, 3, 206–224. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Ahad, T.; Jahan, I.; Mazumder, M. Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. Technologies 2020, 8, 67. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Rahaman, A.Z.; Noor, F.; Duti, B.M. Establishment of co-relation between remote sensing based trmm data and ground based precipitation data in north-east region of bangladesh. In Proceedings of the 2nd International Conference on Civil Engineering for Sustainable Development (ICCESD-2014), KUET, Khulna, Bangladesh, 14–16 February 2014. [Google Scholar]
- Al Hossain, B.M.T.; Ahmed, T.; Aktar, M.N.; Fida, M.; Khan, A.; Islam, A.S.; Yazdan, M.M.S.; Noor, F.; Rahaman, A.Z. Climate Change Impacts on Water Availability in the Meghna Basin. In Proceedings of the 5th International Conference on Water and Flood Management (ICWFM-2015), Dhaka, Bangladesh, 6–8 March 2015; pp. 6–8. [Google Scholar]
- Yazdan, M.; Ahad, T.; Mallick, Z.; Mallick, S.; Jahan, I.; Mazumder, M. An Overview of the Glucocorticoids’ Pathways in the Environment and Their Removal Using Conventional Wastewater Treatment Systems. Pollutants 2021, 1, 141–155. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Young, G.J.; Hewitt, K. Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. IAHS Publ. 1990, 190, 139–152. [Google Scholar]
- Zhu, Y.-M.; Lu, X.X.; Zhou, Y. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 2007, 84, 111–125. [Google Scholar] [CrossRef]
- Davenport, F.V.; Diffenbaugh, N.S. Using Machine Learning to Analyze Physical Causes of Climate Change: A Case Study of U.S. Midwest Extreme Precipitation. Geophys. Res. Lett. 2021, 48, e2021GL093787. [Google Scholar] [CrossRef]
- Al Mehedi, A.; Yazdan, M.M.S.; Ahad, T.; Akatu, W.; Kumar, R.; Rahman, A. Quantifying Small-Scale Hyporheic Streamlines and Resident Time under Gravel-Sand Streambed Using a Coupled HEC-RAS and MIN3P Model. Eng 2022, 3, 276–300. [Google Scholar] [CrossRef]
- He, M.; Chen, C.; Zheng, F.; Chen, Q.; Zhang, J.; Yan, H.; Lin, Y. An efficient dynamic route optimization for urban flooding evacuation based on Cellular Automata. Comput. Environ. Urban Syst. 2021, 87, 101622. [Google Scholar] [CrossRef]
- Piyumi, M.; Abenayake, C.; Jayasinghe, A.; Wijegunarathna, E. Urban Flood Modeling Application: Assess the Effectiveness of Building Regulation in Coping with Urban Flooding Under Precipitation Uncertainty. Sustain. Cities Soc. 2021, 75, 103294. [Google Scholar] [CrossRef]
- Granata, F.; Saroli, M.; de Marinis, G.; Gargano, R. Machine learning models for spring discharge forecasting. Geofluids 2018, 2018, 8328167. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education: New York, NY, USA, 2009. [Google Scholar]
- Hasanpour Kashani, M.; Ghorbani, M.A.; Dinpazhouh, Y.; Shahmorad, S. Rainfall-Runoff simulation in the Navrood river basin using truncated volterra model and artificial neural networks. J. Watershed Manag. Res. 2016, 6, 1–10. [Google Scholar]
- Lee, E.H.; Kim, J.H.; Choo, Y.M.; Jo, D.J. Application of Flood Nomograph for Flood Forecasting in Urban Areas. Water 2018, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Culter, A.; Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Dewals, B.; Bruwier, M.; Pirotton, M.; Erpicum, S.; Archambeau, P. Porosity Models for Large-Scale Urban Flood Modelling: A Review. Water 2021, 13, 960. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2020, 12, 101075. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanaka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Meyer, V.; Schwarze, R. The Economics and Management of Flood Risk in Germany. In Urban Water Management for Future Cities; Springer: Cham, Switzerland, 2019; pp. 473–495. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Santos, I.; Borde, A. (Eds.) The Economic Impacts of Natural Disasters; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Da Costa, J.N.; Calka, B.; Bielecka, E. Urban Population Flood Impact Applied to a Warsaw Scenario. Resources 2021, 10, 62. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Tabari, H.; Yazdi, A.A.; Isik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2013, 25, 25–37. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Afan, H.A.; Hameed, M.; Mohtar, W.H.M.W.; Hussain, A. RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput. Appl. 2015, 27, 1533–1542. [Google Scholar] [CrossRef]
- Napolitano, G.; See, L.; Calvo, B.; Savi, F.; Heppenstall, A. A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome. Phys. Chem. Earth Parts A/B/C 2010, 35, 187–194. [Google Scholar] [CrossRef]
- Muñoz, P.; Orellana-Alvear, J.; Willems, P.; Célleri, R. Flash-Flood Forecasting in an Andean Mountain Catchment—Development of a Step-Wise Methodology Based on the Random Forest Algorithm. Water 2018, 10, 1519. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Pianosi, F.; Thi, X.Q.; Soncini-Sessa, R. Artificial Neural Networks and Multi Objective Genetic Algorithms for water resources management: An application to the Hoabinh reservoir in Vietnam. IFAC Proc. Vol. 2011, 44, 10579–10584. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Tokar, A.S.; Johnson, P.A. Rainfall-Runoff Modeling Using Artificial Neural Networks. J. Hydrol. Eng. 1999, 4, 232–239. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H. Simulation of rainfall-runoff process using an artificial neural network (ANN) and field plots data. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2021, 147, 87–98. [Google Scholar] [CrossRef]
- Nourani, V.; Komasi, M.; Mano, A. A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling. Water Resour. Manag. 2009, 23, 2877–2894. [Google Scholar] [CrossRef]
- Pechlivanidis, I. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Glob. NEST J. 2013, 13, 193–214. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Vega-Jácome, F.; Bronstert, A. Towards a more consistent eco-hydrological modelling through multi-objective calibration: A case study in the Andean Vilcanota River basin, Peru. Hydrol. Sci. J. 2020, 66, 59–74. [Google Scholar] [CrossRef]
- Sharma, A.; Hettiarachchi, S.; Wasko, C. Estimating design hydrologic extremes in a warming climate: Alternatives, uncertainties and the way forward. Philos. Trans. R. Soc. A 2021, 379, 20190623. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Mishra, A.; Sahoo, B.; Chatterjee, C. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. J. Hydrol. 2020, 590, 125260. [Google Scholar] [CrossRef]
- Kauffeldt, A.; Halldin, S.; Rodhe, A.; Xu, C.-Y.; Westerberg, I.K. Disinformative data in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 2013, 17, 2845–2857. [Google Scholar] [CrossRef] [Green Version]
- Nohara, D.; Kitani, K.; Michihiro, Y.; Sumi, T. Decision support for preliminary release of reservoir for flood control using ECMWF medium-range ensemble rainfall forecast. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 346, p. 01024. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling river flow in cold and ungauged regions: A review of the purposes, methods, and challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Shankar, V.S.; Purti, N.; Ganta, N.; Mandal, K.K.; Singh, R.P.; Kaviarasan, T.; Satyakeerthy, T.R.; Jacob, S. Assessment of the hydrological and erosive status of South Andaman’s watersheds using drainage morphometric studies and climatic water balance model. Geocarto Int. 2022, 1–24. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Khan, Q.; Kalbus, E.; Zaki, N.; Mohamed, M.M. Utilization of social media in floods assessment using data mining techniques. PLoS ONE 2022, 17, e0267079. [Google Scholar] [CrossRef]
- Khamaiseh, S.; Al-Alaj, A.; Adnan, M.; Alomari, H.W. The Robustness of Detecting Known and Unknown DDoS Saturation Attacks in SDN via the Integration of Supervised and Semi-Supervised Classifiers. Future Internet 2022, 14, 164. [Google Scholar] [CrossRef]
- Rawat, S.; Saini, R.; Hatture, S.K.; Shukla, P.K. Analysis of Post-flood Impacts on Sentinel-2 Data Using Non-parametric Machine Learning Classifiers: A Case Study from Bihar Floods, Saharsa, India. In Proceedings of the International Conference on Computing in Engineering & Technology, Lonere, India, 12–13 February 2022; pp. 152–160. [Google Scholar] [CrossRef]
- Alatoom, Y.I.; Obaidat, T.I.A.-S. Development of pavement roughness models using Artificial Neural Network (ANN). Int. J. Pavement Eng. 2021, 1–16. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. A new wavelet–bootstrap–ANN hybrid model for daily discharge forecasting. J. Hydroinform. 2010, 13, 500–519. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Eli, R.N. Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Manag. 1995, 121, 499–508. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Nayak, P.C.; Ramasastri, K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Process. 2003, 17, 677–686. [Google Scholar] [CrossRef]
- Unal, B.; Mamak, M.; Seckin, G.; Cobaner, M. Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels. Adv. Eng. Softw. 2010, 41, 120–129. [Google Scholar] [CrossRef]
- Al Mehedi, M.A.; Reichert, N.; Molkenthin, F. Sensitivity Analysis of Hyporheic Exchange to Small Scale Changes in Gravel-Sand Flumebed Using a Coupled Groundwater-Surface Water Model. In Proceedings of the Copernicus Meetings, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Al Rifat, S.A.; Liu, W. Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area. Land Use Policy 2022, 114, 105994. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, W.; Fan, Y.; Tasi, H.-T. Artificial neural network based predictive method for flood disaster. Comput. Ind. Eng. 2002, 42, 383–390. [Google Scholar] [CrossRef]
- Al Mehedi, A.; Yazdan, M.M.S. Automated Particle Tracing & Sensitivity Analysis for Residence Time in a Saturated Subsurface Media. Liquids 2022, 2, 72–84. [Google Scholar] [CrossRef]
- Alati, M.F.; Fortino, G.; Morales, J.; Cecilia, J.M.; Manzoni, P. Time series analysis for temperature forecasting using TinyML. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Online, 8–11 January 2022; pp. 691–694. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chau, K.-W.; Cheng, C.-T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Hussain, D.; Hussain, T.; Khan, A.A.; Naqvi, S.A.A.; Jamil, A. A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Sci. Inform. 2020, 13, 915–927. [Google Scholar] [CrossRef]
Parameters | Mean | Std | Maximum | Minimum |
---|---|---|---|---|
Discharge (m3/s) | 7.65 | 8.48 | 95.5 | 0.43 |
Precipitation (mm) | 2.88 | 9.64 | 182.5 | 0 |
Temperature (°C) | 12.39 | 6.52 | 26.7 | −3.1 |
Evapotranspiration (mm) | 2.7 | 1.73 | 8.28 | 0.21 |
Partition | Period | No. of Record |
---|---|---|
Training | 2011–2013 | 1096 |
Testing | 2013–2014 | 365 |
Complete | 2011–2014 | 1461 |
Models | Training/Calibration Data | Test/Validation Data | ||||
---|---|---|---|---|---|---|
R | MAE | RMSE | R | MAE | RMSE | |
ANN | 0.47 | 4.22 | 6.68 | 0.58 | 5.68 | 9.10 |
Linear Regression | 0.39 | 4.67 | 7.16 | 0.48 | 6.16 | 9.71 |
Decision Tree | 0.99 | 0.03 | 0.28 | 0.32 | 7.61 | 11.42 |
Random Forest | 0.94 | 1.76 | 2.94 | 0.43 | 6.31 | 9.79 |
NAM Model | 0.78 | 3.53 | 5.49 | 0.76 | 5.85 | 7.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Al Mehedi, M.A.; Yazdan, M.M.S.; Kumar, R. Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River. Liquids 2022, 2, 147-160. https://doi.org/10.3390/liquids2030010
Ahmad M, Al Mehedi MA, Yazdan MMS, Kumar R. Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River. Liquids. 2022; 2(3):147-160. https://doi.org/10.3390/liquids2030010
Chicago/Turabian StyleAhmad, Mumtaz, Md Abdullah Al Mehedi, Munshi Md Shafwat Yazdan, and Raaghul Kumar. 2022. "Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River" Liquids 2, no. 3: 147-160. https://doi.org/10.3390/liquids2030010
APA StyleAhmad, M., Al Mehedi, M. A., Yazdan, M. M. S., & Kumar, R. (2022). Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River. Liquids, 2(3), 147-160. https://doi.org/10.3390/liquids2030010