Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction
Definition
:1. Introduction
Isolation Methods for Testing Analgesic Action on Nerve Fibers
2. Actions of Analgesics on Nerve AP Conduction
2.1. NSAIDs
2.2. Opioids
2.2.1. Tramadol
2.2.2. Other Opioid-Related Compounds (Morphine, Codeine, and Ethylmorphine)
3. Actions of Analgesic Adjuvants on Nerve AP Conduction
3.1. Local Anesthetics
3.1.1. Amide-Type Local Anesthetics
3.1.2. Ester-Type Local Anesthetics
3.2. Antiepileptics
3.3. Antidepressants
3.4. Adrenoceptor Agonists
4. Comparison in Nerve AP Conduction Inhibition among Analgesics and Analgesic Adjuvants
5. Actions of Plant-Derived Compounds on Nerve AP Conduction
Category | Compound | IC50 (mM) | Studied Concentration (mM) | Observed AP Reduction (%) | References |
---|---|---|---|---|---|
Acetic acid-based NSAIDs | Diclofenac | 0.94 | - | - | [26] |
Aceclofenac | 0.47 | - | - | [26] | |
Indomethacin | - | 1 | 38 | [26] | |
Acemetacin | - | 1 | 38 | [26] | |
Etodolac | - | 1 | 15 | [26] | |
Sulindac | - | 1 | 0 | [26] | |
Feblinac | - | 1 | 0 | [26] | |
Fenamic acid-based NSAIDs | Tolfenamic acid | 0.29 | - | - | [26] |
Meclofenamic acid | 0.19 | - | - | [26] | |
Mefenamic acid | - | 0.2 | 16 | [26] | |
Flufenamic acid | 0.22 | - | - | [26] | |
Salicylic acid-based NSAID | Aspirin | - | 1 | 0 | [26] |
Propionic acid-based NSAIDs | Ketoprofen | - | 1 | 0 | [26] |
Naproxen | - | 1 | 0 | [26] | |
Ibuprofen | - | 1 | 0 | [26] | |
Loxoprofen | - | 1 | 0 | [26] | |
Flurbiprofen | - | 1 | 0 | [26] | |
Enolic acid-based NSAIDs | Meloxicam | - | 0.5 | 0 | [26] |
Piroxicam | - | 1 | 0 | [26] | |
Opioids | Tramadol | 2.3 | - | - | [27] |
Mono-O-desmethyl-tramadol | - | 5 | 9 | [27] | |
Morphine | - | 5 | 15 | [28] | |
Codeine | - | 5 | 30 | [28] | |
Ethylmorphine | 4.6 | - | - | [28] | |
Amide-type local anesthetics | Lidocaine | 0.74 | - | - | [28] |
Ropivacaine | 0.34 | - | - | [27] | |
Prilocaine | 1.8 | - | - | [67] | |
Levobupivacaine | 0.23 | - | - | [30] | |
Bupivacaine | - | 0.5 | 76 | [30] | |
Ester-type local anesthetics | Cocaine | 0.80 | - | - | [28] |
Procaine | 2.2 | - | - | [164] | |
Benzocaine | 0.80 | - | - | [29] | |
Tetracaine | 0.014 | - | - | [32] | |
Other-type local anesthetic | Pramoxine | 0.21 | - | - | [67] |
Antiepileptics | Lamotrigine | 0.44 | - | - | [30] |
Carbamazepine | 0.50 | - | - | [30] | |
Oxcarbazepine | - | 0.5 | 20 | [30] | |
Phenytoin | - | 0.1 | 15 | [30] | |
Gabapentin | - | 10 | 0 | [30] | |
Topiramate | - | 10 | 0 | [30] | |
Sodium valproate | - | 10 | 0 | [30] | |
Antidepressants | Duloxetine | 0.23 | - | - | [31] |
Fluoxetine | 1.5 | - | - | [31] | |
Amitriptyline | 0.26 | - | - | [31] | |
Desipramine | 1.6 | - | - | [31] | |
Maprotiline | 0.95 | - | - | [31] | |
Trazodone | ca. 1.0 | - | - | [31] | |
Adrenoceptor agonists | Adrenaline | - | 1 | 0 | [32] |
Noradrenaline | - | 1 | 0 | [32] | |
Dexmedetomidine | 0.40 | - | - | [32] | |
Oxymetazoline | 1.5 | - | - | [32] | |
Clonidine | - | 2 | ca. 20 | [32] | |
Phenylephrine | - | 1 | 0 | [32] | |
Isoproterenol | - | 1 | 0 | [32] | |
Open chain or six-membered plant-derived compounds | Carvacrol | 0.34 | - | - | [290] |
Thymol | 0.34 | - | - | [290] | |
Citronellol | 0.35 | - | - | [292] | |
Bornyl acetate | 0.44 | - | - | [292] | |
Citral | 0.46 | - | - | [292] | |
Citronellal | 0.50 | - | - | [292] | |
Geranyl acetate | 0.51 | - | - | [292] | |
Geraniol | 0.53 | - | - | [292] | |
Capsaicin | - | 0.1 | 36 | [164] | |
(+)-Pulegone | 1.4 | - | - | [290] | |
(-)-Carvone | 1.4 | - | - | [290] | |
(+)-Carvone | 2.0 | - | - | [290] | |
(+)-Borneol | 1.5 | - | - | [292] | |
(±)-Linalool | 1.7 | - | - | [292] | |
(-)-Menthone | 1.5 | - | - | [290] | |
(+)-Menthone | 2.2 | - | - | [290] | |
(-)-Carveol | 1.3 | - | - | [290] | |
α-Terpineol | 2.7 | - | - | [292] | |
Rose oxide | 2.6 | - | - | [292] | |
Cinnamaldehyde | 1.2 | - | - | [291] | |
Ally isothiocyanate | 1.5 | - | - | [291] | |
Linalyl acetate | 0.71 | - | - | [292] | |
Eugenol | 0.81 | - | - | [164] | |
(-)-Menthol | 1.1 | - | - | [290] | |
(+)-Menthol | 0.93 | - | - | [290] | |
1,8-Cineole | 5.7 | - | - | [290] | |
1,4-Cineole | 7.2 | - | - | [290] | |
Zingerone | 8.3 | - | - | [164] | |
Guaiacol | 7.7 | - | - | [164] | |
Vanilin | 9.0 | - | - | [164] | |
p-Cymene | - | 2 | 22 | [292] | |
Myrcene | - | 5 | 7 | [292] | |
Vanillylamine | - | 10 | 12 | [164] | |
(+)-Limonene | - | 10 | 8 | [290] | |
Vanillic acid | - | 7 | 0 | [164] | |
p-Menthane | - | 10 | 0 | [290] | |
Menthyl chloride | - | 10 | 0 | [290] | |
Seven-membered ring plant-derived compound | Hinokitiol | 0.54 | - | - | [303] |
General anesthetic | Propofol | 0.14 | - | - | [29] |
6. Conclusions
Funding
Conflicts of Interest
References
- Fields, H.L. Pain; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Willis, W.D., Jr.; Coggeshall, R.E. Sensory Mechanisms of the Spinal Cord, 2nd ed.; Plenum: New York, NY, USA, 1991. [Google Scholar]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merighi, A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog. Neurobiol. 2018, 169, 91–134. [Google Scholar] [PubMed]
- Merskey, H. Clarifying definition of neuropathic pain. Pain 2002, 96, 408–409. [Google Scholar] [CrossRef]
- Amir, R.; Argoff, C.E.; Bennett, G.J.; Cummins, T.R.; Durieux, M.E.; Gerner, P.; Gold, M.S.; Porreca, F.; Strichartz, G.R. The role of sodium channels in chronic inflammatory and neuropathic pain. J. Pain 2006, 7, S1–S29. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Sindrup, S.H.; Jensen, T.S. The evidence for pharmacological treatment of neuropathic pain. Pain 2010, 150, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.S. Anticonvulsants in neuropathic pain: Rationale and clinical evidence. Eur. J. Pain 2002, 6, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kamibayashi, T.; Maze, M. Clinical uses of α2-adrenergic agonists. Anesthesiology 2000, 93, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.E. Antidepressants as analgesics: A review of randomized controlled trials. J. Psychiatry Neurosci. 2001, 26, 30–36. [Google Scholar] [PubMed]
- Sindrup, S.H.; Otto, M.; Finnerup, N.B.; Jensen, T.S. Antidepressants in the treatment of neuropathic pain. Basic Clin. Pharmacol. Toxicol. 2005, 96, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Theile, J.W.; Cummins, T.R. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front. Pharmacol. 2011, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Waszkielewicz, A.M.; Gunia, A.; Słoczyńska, K.; Marona, H. Evaluation of anticonvulsants for possible use in neuropathic pain. Curr. Med. Chem. 2011, 18, 4344–4358. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Jorjani, M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed. Pharmacother. 2021, 139, 111563. [Google Scholar] [PubMed]
- Kocot-Kępska, M.; Zajączkowska, R.; Mika, J.; Kopsky, D.J.; Wordliczek, J.; Dobrogowski, J.; Przeklasa-Muszyńska, A. Topical treatments and their molecular/cellular mechanisms in patients with peripheral neuropathic pain—Narrative review. Pharmaceutics 2021, 13, 450. [Google Scholar] [CrossRef] [PubMed]
- Fürst, S. Transmitters involved in antinociception in the spinal cord. Brain Res. Bull. 1999, 48, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, E. Cellular mechanisms for antinociception produced by oxytocin and orexins in the rat spinal lamina II—Comparison with those of other endogenous pain modulators. Pharmaceuticals 2019, 12, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeilhofer, H.U.; Wildner, H.; Yévenes, G.E. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol. Rev. 2012, 92, 193–235. [Google Scholar] [CrossRef]
- Gouveia, D.N.; Pina, L.T.S.; Rabelo, T.K.; da Rocha Santos, W.B.; Quintans, J.S.S.; Guimarães, A.G. Monoterpenes as perspective to chronic pain management: A systematic review. Curr. Drug Targets 2018, 19, 960–972. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Heinbockel, T. Essential oils and their constituents targeting the GABAergic system and sodium channels as treatment of neurological diseases. Molecules 2018, 23, 1061. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, D.N.; Guimarães, A.G.; da Rocha Santos, W.B.; Quintans-Júnior, L.J. Natural products as a perspective for cancer pain management: A systematic review. Phytomedicine 2019, 58, 152766. [Google Scholar] [CrossRef]
- Kiernan, M.C.; Bostock, H.; Park, S.B.; Kaji, R.; Krarup, C.; Krishnan, A.V.; Kuwabara, S.; Lin, C.S.; Misawa, S.; Moldovan, M.; et al. Measurement of axonal excitability: Consensus guidelines. Clin. Neurophysiol. 2020, 131, 308–323. [Google Scholar] [CrossRef]
- Levitan, I.B.; Karczmarek, L.K. The Neuron, 3rd ed.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Kumamoto, E.; Mizuta, K.; Fujita, T. Peripheral nervous system in the frog as a tool to examine the regulation of the transmission of neuronal information. In Frogs: Biology, Ecology and Uses; Murray, J.L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 89–106. [Google Scholar]
- Kobayashi, J.; Ohta, M.; Terada, Y. C fiber generates a slow Na+ spike in the frog sciatic nerve. Neurosci. Lett. 1993, 162, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Fujita, T.; Mizuta, K.; Kumamoto, E. Inhibition by non-steroidal anti-inflammatory drugs of compound action potentials in frog sciatic nerve fibers. Biomed. Pharmacother. 2018, 103, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, R.; Fujita, T.; Koga, A.; Liu, T.; Nakatsuka, T.; Nakashima, M.; Kumamoto, E. Tramadol, but not its major metabolite (mono-O-demethyl tramadol) depresses compound action potentials in frog sciatic nerves. Br. J. Pharmacol. 2006, 149, 319–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuta, K.; Fujita, T.; Nakatsuka, T.; Kumamoto, E. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures. Life Sci. 2008, 83, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Magori, N.; Fujita, T.; Mizuta, K.; Kumamoto, E. Inhibition by general anesthetic propofol of compound action potentials in the frog sciatic nerve and its chemical structure. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Fujita, T.; Ohtsubo, S.; Hirakawa, N.; Sakaguchi, Y.; Kumamoto, E. Effects of various antiepileptics used to alleviate neuropathic pain on compound action potential in frog sciatic nerves: Comparison with those of local anesthetics. Biomed. Res. Int. 2014, 2014, 540238. [Google Scholar] [CrossRef] [PubMed]
- Hirao, R.; Fujita, T.; Sakai, A.; Kumamoto, E. Compound action potential inhibition produced by various antidepressants in the frog sciatic nerve. Eur. J. Pharmacol. 2018, 819, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, T.; Mizuta, K.; Fujita, T.; Nakashima, M.; Kumamoto, E. High concentrations of dexmedetomidine inhibit compound action potentials in frog sciatic nerves without α2 adrenoceptor activation. Br. J. Pharmacol. 2010, 160, 1662–1676. [Google Scholar] [CrossRef] [Green Version]
- Kumamoto, E. Effects of plant-derived compounds on excitatory synaptic transmission and nerve conduction in the nervous system—Involvement in pain modulation. Curr. Top. Phytochem. 2018, 14, 45–70. [Google Scholar]
- Ferreira, S.H. Prostaglandins, aspirin-like drugs and analgesia. Nat. New Biol. 1972, 240, 200–203. [Google Scholar] [CrossRef]
- Takayama, K.; Hirose, A.; Suda, I.; Miyazaki, A.; Oguchi, M.; Onotogi, M.; Fotopoulos, G. Comparison of the anti-inflammatory and analgesic effects in rats of diclofenac-sodium, felbinac and indomethacin patches. Int. J. Biomed. Sci. 2011, 7, 222–229. [Google Scholar] [PubMed]
- Vane, J.R. Introduction: Mechanism of action of NSAIDs. Br. J. Rheumatol. 1996, 35 (Suppl. S1), 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosser, T.; Smyth, E.; FitzGerald, G.A. Anti-inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill, Medical Publishing Division: New York, NY, USA, 2011; pp. 959–1004. [Google Scholar]
- Kaduševičius, E. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int. J. Mol. Sci. 2021, 22, 6637. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Sanguinetti, M.C. Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol. Pharmacol. 2012, 82, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, M.I.; Torres-López, J.E.; Castañeda-Hernández, G.; Rosas, R.; Vidal-Cantú, G.C.; Granados-Soto, V. Pharmacological evidence for the activation of K+ channels by diclofenac. Eur. J. Pharmacol. 2002, 438, 85–91. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Castañeda-Hernández, G.; Granados-Soto, V. Pharmacological evidence for the activation of Ca2+-activated K+ channels by meloxicam in the formalin test. Pharmacol. Biochem. Behav. 2005, 81, 725–731. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Granados-Soto, V.; Castañeda-Hernández, G. The NO-cGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol. Biochem. Behav. 2003, 76, 187–195. [Google Scholar] [CrossRef]
- Peretz, A.; Degani, N.; Nachman, R.; Uziyel, Y.; Gibor, G.; Shabat, D.; Attali, B. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol. Pharmacol. 2005, 67, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Gwanyanya, A.; Macianskiene, R.; Mubagwa, K. Insights into the effects of diclofenac and other non-steroidal anti-inflammatory agents on ion channels. J. Pharm. Pharmacol. 2012, 64, 1359–1375. [Google Scholar] [CrossRef]
- Guinamard, R.; Simard, C.; Del Negro, C. Flufenamic acid as an ion channel modulator. Pharmacol. Ther. 2013, 138, 272–284. [Google Scholar] [CrossRef]
- Voilley, N.; de Weille, J.; Mamet, J.; Lazdunski, M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 2001, 21, 8026–8033. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Ito, S.; Nogawa, M.; Tajima, K.; Kyoi, T. Etodolac blocks the allyl isothiocyanate-induced response in mouse sensory neurons by selective TRPA1 activation. Pharmacology 2012, 90, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Sasaki, E.; Nakagawa, A.; Muraki, Y.; Hatano, N.; Muraki, K. Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol. Res. Perspect. 2016, 4, e00232. [Google Scholar] [CrossRef]
- Papworth, J.; Colville-Nash, P.; Alam, C.; Seed, M.; Willoughby, D. The depletion of substance P by diclofenac in the mouse. Eur. J. Pharmacol. 1997, 325, R1–R2. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.C.R.; Castor, M.G.M.; Souza, T.C.; Duarte, I.D.G.; Romero, T.R.L. NSAIDs induce peripheral antinociception by interaction with the adrenergic system. Life Sci. 2015, 130, 7–11. [Google Scholar] [CrossRef]
- Vazquez, E.; Hernandez, N.; Escobar, W.; Vanegas, H. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: Involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Brain Res. 2005, 1048, 211–217. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Castor, M.G.M.; Navarro, L.C.; Romero, T.R.L.; Duarte, I.D.G. κ-Opioid receptor participates of NSAIDs peripheral antinociception. Neurosci. Lett. 2016, 622, 6–9. [Google Scholar] [CrossRef]
- Fowler, C.J. NSAIDs: eNdocannabinoid stimulating anti-inflammatory drugs? Trends Pharmacol. Sci. 2012, 33, 468–473. [Google Scholar] [CrossRef]
- McCormack, K.; Brune, K. Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs. A survey of their analgesic efficacy. Drugs 1991, 41, 533–547. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, H.I.; Shin, Y.K.; Lee, C.S.; Park, M.; Song, J.-H. Diclofenac inhibition of sodium currents in rat dorsal root ganglion neurons. Brain Res. 2003, 992, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.C.; Luna, C.; Graff, G.; Meseguer, V.M.; Viana, F.; Gallar, J.; Belmonte, C. Comparative effects of the nonsteroidal anti-inflammatory drug nepafenac on corneal sensory nerve fibers responding to chemical irritation. Investig. Ophthalmol. Vis. Sci. 2007, 48, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Fei, X.-W.; Liu, L.-Y.; Xu, J.-G.; Zhang, Z.-H.; Mei, Y.-A. The non-steroidal anti-inflammatory drug, diclofenac, inhibits Na+ current in rat myoblasts. Biochem. Biophys. Res. Commun. 2006, 346, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Yarishkin, O.V.; Hwang, E.M.; Kim, D.; Yoo, J.C.; Kang, S.S.; Kim, D.R.; Shin, J.-H.-J.; Chung, H.-J.; Jeong, H.-S.; Kang, D.; et al. Diclofenac, a non-steroidal anti-inflammatory drug, inhibits L-type Ca2+ channels in neonatal rat ventricular cardiomyocytes. Korean J. Physiol. Pharmacol. 2009, 13, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-C.; Huang, R.-C.; Lou, B.-S. Inhibition of Na+ current by diphenhydramine and other diphenyl compounds: Molecular determinants of selective binding to the inactivated channels. Mol. Pharmacol. 2000, 57, 135–143. [Google Scholar]
- Yang, Y.-C.; Kuo, C.-C. An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+. J. Gen. Physiol. 2005, 125, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Yau, H.-J.; Baranauskas, G.; Martina, M. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating. J. Physiol. 2010, 588, 3869–3882. [Google Scholar] [CrossRef]
- Nakamura, M.; Jang, I.-S. pH-dependent inhibition of tetrodotoxin-resistant Na+ channels by diclofenac in rat nociceptive neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 35–43. [Google Scholar] [CrossRef]
- Sun, J.-F.; Xu, Y.-J.; Kong, X.-H.; Su, Y.; Wang, Z.-Y. Fenamates inhibit human sodium channel Nav1.7 and Nav1.8. Neurosci. Lett. 2019, 696, 67–73. [Google Scholar] [CrossRef]
- Chen, X.; Gallar, J.; Belmonte, C. Reduction by antiinflammatory drugs of the response of corneal sensory nerve fibers to chemical irritation. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1944–1953. [Google Scholar]
- Kumamoto, E. Inhibition of fast nerve conduction produced by analgesics and analgesic adjuvants—Possible involvement in pain alleviation. Pharmaceuticals 2020, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuta, K.; Fujita, T.; Yamagata, H.; Kumamoto, E. Bisphenol A inhibits compound action potentials in the frog sciatic nerve in a manner independent of estrogen receptors. Biochem. Biophys. Rep. 2017, 10, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Gil-Flores, M.; Ortiz, M.I.; Castañeda-Hernández, G.; Chávez-Piña, A.E. Acemetacin antinociceptive mechanism is not related to NO or K+ channel pathways. Methods Find. Exp. Clin. Pharmacol. 2010, 32, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Gögelein, H.; Dahlem, D.; Englert, H.C.; Lang, H.J. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett. 1990, 268, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Tian, J.; Zhu, Y.; Wang, C.; Xiao, R.; Herz, J.M.; Wood, J.D.; Zhu, M.X. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflüg. Arch. 2010, 459, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Tatematsu, Y.; Hayashi, H.; Taguchi, R.; Fujita, H.; Yamamoto, A.; Ohkura, K. Effect of N-phenylanthranilic acid scaffold nonsteroidal anti-inflammatory drugs on the mitochondrial permeability transition. Biol. Pharm. Bull. 2016, 39, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Glass, J.S.; Hardy, C.L.; Meeks, N.M.; Carroll, B.T. Acute pain management in dermatology: Risk assessment and treatment. J. Am. Acad. Dermatol. 2015, 73, 543–560. [Google Scholar] [CrossRef]
- Fujita, T.; Kumamoto, E. Inhibition by endomorphin-1 and endomorphin-2 of excitatory transmission in adult rat substantia gelatinosa neurons. Neuroscience 2006, 139, 1095–1105. [Google Scholar] [CrossRef]
- Kohno, T.; Kumamoto, E.; Higashi, H.; Shimoji, K.; Yoshimura, M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J. Physiol. 1999, 518, 803–813. [Google Scholar] [CrossRef]
- Yoshimura, M.; North, R.A. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 1983, 305, 529–530. [Google Scholar] [CrossRef]
- North, R.A. Opioid actions on membrane ion channels. In Handbook of Experimental Pharmacology; Herz, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 104, pp. 773–797. [Google Scholar]
- Yaksh, T.L. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol. Scand. 1997, 41, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.W.; Buchan, P.; Parsons, D.N.; Wilkinson, S. Peripheral antinociceptive effects of N-methyl morphine. Life Sci. 1982, 31, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.; Comisel, K.; Haimerl, E.; Yassouridis, A.; Lehrberger, K.; Herz, A.; Peter, K. Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N. Engl. J. Med. 1991, 325, 1123–1126. [Google Scholar] [CrossRef] [PubMed]
- Shannon, H.E.; Lutz, E.A. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology 2002, 42, 253–261. [Google Scholar] [CrossRef]
- Wenk, H.N.; Brederson, J.-D.; Honda, C.N. Morphine directly inhibits nociceptors in inflamed skin. J. Neurophysiol. 2006, 95, 2083–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labuz, D.; Mousa, S.A.; Schäfer, M.; Stein, C.; Machelska, H. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res. 2007, 1160, 30–38. [Google Scholar] [CrossRef]
- Stein, C.; Schäfer, M.; Machelska, H. Attacking pain at its source: New perspectives on opioids. Nat. Med. 2003, 9, 1003–1008. [Google Scholar] [CrossRef]
- Yuge, O.; Matsumoto, M.; Kitahata, L.M.; Collins, J.G.; Senami, M. Direct opioid application to peripheral nerves does not alter compound action potentials. Anesth. Analg. 1985, 64, 667–671. [Google Scholar] [CrossRef]
- Gissen, A.J.; Gugino, L.D.; Datta, S.; Miller, J.; Covino, B.G. Effects of fentanyl and sufentanil on peripheral mammalian nerves. Anesth. Analg. 1987, 66, 1272–1276. [Google Scholar] [CrossRef]
- Jaffe, R.A.; Rowe, M.A. A comparison of the local anesthetic effects of meperidine, fentanyl, and sufentanil on dorsal root axons. Anesth. Analg. 1996, 83, 776–781. [Google Scholar] [CrossRef]
- Jurna, I.; Grossmann, W. The effect of morphine on mammalian nerve fibres. Eur. J. Pharmacol. 1977, 44, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Coggeshall, R.E.; Zhou, S.; Carlton, S.M. Opioid receptors on peripheral sensory axons. Brain Res. 1997, 764, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.L.; Emson, P.C.; Leigh, B.K.; Gilbert, R.F.T.; Iversen, L.L. Multiple opiate receptor sites on primary afferent fibres. Nature 1980, 284, 351–353. [Google Scholar] [CrossRef]
- Wenk, H.N.; Honda, C.N. Immunohistochemical localization of delta opioid receptors in peripheral tissues. J. Comp. Neurol. 1999, 408, 567–579. [Google Scholar] [CrossRef]
- Klotz, U. Tramadol—The impact of its pharmacokinetic and pharmacodynamic properties on the clinical management of pain. Arzneimittelforschung 2003, 53, 681–687. [Google Scholar] [CrossRef]
- Lintz, W.; Erlacin, S.; Frankus, E.; Uragg, H. Metabolismus von Tramadol bei Mensch und Tier. Arzneimittelforschung 1981, 31, 1932–1943. [Google Scholar]
- Hennies, H.-H.; Friderichs, E.; Schneider, J. Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittelforschung 1988, 38, 877–880. [Google Scholar]
- Raffa, R.B.; Friderichs, E.; Reimann, W.; Shank, R.P.; Codd, E.E.; Vaught, J.L. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J. Pharmacol. Exp. Ther. 1992, 260, 275–285. [Google Scholar]
- Koga, A.; Fujita, T.; Totoki, T.; Kumamoto, E. Tramadol produces outward currents by activating µ-opioid receptors in adult rat substantia gelatinosa neurones. Br. J. Pharmacol. 2005, 145, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Koga, A.; Fujita, T.; Piao, L.-H.; Nakatsuka, T.; Kumamoto, E. Inhibition by O-desmethyltramadol of glutamatergic excitatory transmission in adult rat spinal substantia gelatinosa neurons. Mol. Pain 2019, 15, 1744806918824243. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, H.; Funai, Y.; Funao, T.; Mori, T.; Nishikawa, K. Effects of tramadol on substantia gelatinosa neurons in the rat spinal cord: An in vivo patch-clamp analysis. PLoS ONE 2015, 10, e0125147. [Google Scholar] [CrossRef] [PubMed]
- Altunkaya, H.; Ozer, Y.; Kargi, E.; Babuccu, O. Comparison of local anaesthetic effects of tramadol with prilocaine for minor surgical procedures. Br. J. Anaesth. 2003, 90, 320–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altunkaya, H.; Ozer, Y.; Kargi, E.; Ozkocak, I.; Hosnuter, M.; Demirel, C.B.; Babuccu, O. The postoperative analgesic effect of tramadol when used as subcutaneous local anesthetic. Anesth. Analg. 2004, 99, 1461–1464. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.-W.; Mok, M.S.; Chang, D.-P.; Huang, M.-H. Local anesthetic effect of tramadol, metoclopramide, and lidocaine following intradermal injection. Reg. Anesth. Pain Med. 1998, 23, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, P.J.; Coetzee, J.F. Tramadol today. Curr. Opin. Anaesth. 2000, 13, 457–461. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Chang, P.-J.; Jou, I.-M. Direct tramadol application on sciatic nerve inhibits spinal somatosensory evoked potentials in rats. Anesth. Analg. 2001, 92, 1547–1551. [Google Scholar] [CrossRef]
- Shin, H.-W.; Ju, B.-J.; Jang, Y.-K.; You, H.-S.; Kang, H.; Park, J.-Y. Effect of tramadol as an adjuvant to local anesthetics for brachial plexus block: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0184649. [Google Scholar] [CrossRef] [Green Version]
- Mert, T.; Gunes, Y.; Guven, M.; Gunay, I.; Ozcengiz, D. Comparison of nerve conduction blocks by an opioid and a local anesthetic. Eur. J. Pharmacol. 2002, 439, 77–81. [Google Scholar] [CrossRef]
- Güven, M.; Mert, T.; Günay, I. Effects of tramadol on nerve action potentials in rat: Comparisons with benzocaine and lidocaine. Int. J. Neurosci. 2005, 115, 339–349. [Google Scholar] [CrossRef]
- Mert, T.; Gunes, Y.; Guven, M.; Gunay, I.; Gocmen, C. Differential effects of lidocaine and tramadol on modified nerve impulse by 4-aminopyridine in rats. Pharmacology 2003, 69, 68–73. [Google Scholar] [CrossRef]
- Gillen, C.; Haurand, M.; Kobelt, D.J.; Wnendt, S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human µ-opioid receptor. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 362, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Driessen, B.; Reimann, W. Interaction of the central analgesic, tramadol, with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro. Br. J. Pharmacol. 1992, 105, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessen, B.; Reimann, W.; Giertz, H. Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br. J. Pharmacol. 1993, 108, 806–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leffler, A.; Frank, G.; Kistner, K.; Niedermirtl, F.; Koppert, W.; Reeh, P.W.; Nau, C. Local anesthetic-like inhibition of voltage-gated Na+ channels by the partial μ-opioid receptor agonist buprenorphine. Anesthesiology 2012, 116, 1335–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeseler, G.; Foadi, N.; Ahrens, J.; Dengler, R.; Hecker, H.; Leuwer, M. Tramadol, fentanyl and sufentanil but not morphine block voltage-operated sodium channels. Pain 2006, 126, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-Y.; Tsai, Y.-C.; Wu, S.-N.; Liu, Y.-C. Tramadol-induced blockade of delayed rectifier potassium current in NG108-15 neuronal cells. Eur. J. Pain 2006, 10, 597–601. [Google Scholar] [CrossRef]
- Grond, S.; Meuser, T.; Uragg, H.; Stahlberg, H.J.; Lehmann, K.A. Serum concentrations of tramadol enantiomers during patient-controlled analgesia. Br. J. Clin. Pharmacol. 1999, 48, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Brodin, P.; Skoglund, L.A. Dose-response inhibition of rat compound nerve action potential by dextropropoxyphene and codeine compared to morphine and cocaine in vitro. Gen. Pharmacol. 1990, 21, 551–553. [Google Scholar] [CrossRef]
- Hunter, E.G.; Frank, G.B. An opiate receptor on frog sciatic nerve axons. Can. J. Physiol. Pharmacol. 1979, 57, 1171–1174. [Google Scholar] [CrossRef]
- Kumamoto, E.; Mizuta, K.; Fujita, T. Opioid actions in primary-afferent fibers—Involvement in analgesia and anesthesia. Pharmaceuticals 2011, 4, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Bräu, M.E.; Nau, C.; Hempelmann, G.; Vogel, W. Local anesthetics potently block a potential insensitive potassium channel in myelinated nerve. J. Gen. Physiol. 1995, 105, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Bräu, M.E.; Vogel, W.; Hempelmann, G. Fundamental properties of local anesthetics: Half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve. Anesth. Analg. 1998, 87, 885–889. [Google Scholar] [PubMed]
- Tokuno, H.A.; Bradberry, C.W.; Everill, B.; Agulian, S.K.; Wilkes, S.; Baldwin, R.M.; Tamagnan, G.D.; Kocsis, J.D. Local anesthetic effects of cocaethylene and isopropylcocaine on rat peripheral nerves. Brain Res. 2004, 996, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.R.; Irvine, R.J.; Somogyi, A.A.; Bochner, F. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991, 48, 2165–2171. [Google Scholar] [CrossRef]
- Mizuta, K.; Fujita, T.; Kumamoto, E. Inhibition by morphine and its analogs of action potentials in adult rat dorsal root ganglion neurons. J. Neurosci. Res. 2012, 90, 1830–1841. [Google Scholar] [CrossRef]
- Staiman, A.; Seeman, P. The impulse-blocking concentrations of anesthetics, alcohols, anticonvulsants, barbiturates, and narcotics on phrenic and sciatic nerves. Can. J. Physiol. Pharmacol. 1974, 52, 535–550. [Google Scholar] [CrossRef]
- Scholz, A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br. J. Anaesth. 2002, 89, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Rubly, N. Effects of morphine on ionic currents in frog node of Ranvier. Eur. J. Pharmacol. 1983, 95, 185–192. [Google Scholar] [CrossRef]
- Frazier, D.T.; Murayama, K.; Abbott, N.J.; Narahashi, T. Effects of morphine on internally perfused squid giant axons. Proc. Soc. Exp. Biol. Med. 1972, 139, 434–438. [Google Scholar] [CrossRef]
- Wagner, L.E., II; Eaton, M.; Sabnis, S.S.; Gingrich, K.J. Meperidine and lidocaine block of recombinant voltage-dependent Na+ channels: Evidence that meperidine is a local anesthetic. Anesthesiology 1999, 91, 1481–1490. [Google Scholar] [CrossRef] [Green Version]
- Gutstein, H.B.; Akil, H. Opioid analgesics. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 11th ed.; Brunton, L.L., Lazo, J.S., Parker, K.L., Eds.; McGraw-Hill, Medical Publishing Division: New York, NY, USA, 2006; pp. 547–590. [Google Scholar]
- Viel, E.J.; Eledjam, J.J.; De La Coussaye, J.E.; D’Athis, F. Brachial plexus block with opioids for postoperative pain relief: Comparison between buprenorphine and morphine. Reg. Anesth. 1989, 14, 274–278. [Google Scholar] [PubMed]
- King, M.; Su, W.; Chang, A.; Zuckerman, A.; Pasternak, G.W. Transport of opioids from the brain to the periphery by P-glycoprotein: Peripheral actions of central drugs. Nat. Neurosci. 2001, 4, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Mays, K.S.; Lipman, J.J.; Schnapp, M. Local analgesia without anesthesia using peripheral perineural morphine injections. Anesth. Anal. 1987, 66, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.; Mikus, G.; Somogyi, A.; Bochner, F. The influence of pharmacogenetics on opioid analgesia: Studies with codeine and oxycodone in the Sprague-Dawley/Dark Agouti rat model. J. Pharmacol. Exp. Ther. 1994, 271, 1528–1534. [Google Scholar] [PubMed]
- Mikus, G.; Somogyi, A.A.; Bochner, F.; Eichelbaum, M. Codeine O-demethylation: Rat strain differences and the effects of inhibitors. Biochem. Pharmacol. 1991, 41, 757–762. [Google Scholar] [CrossRef]
- Hermanns, H.; Hollmann, M.W.; Stevens, M.F.; Lirk, P.; Brandenburger, T.; Piegeler, T.; Werdehausen, R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: A narrative review. Br. J. Anaesth. 2019, 123, 335–349. [Google Scholar] [CrossRef]
- Hille, B. Ionic Channels of Excitable Membranes; Sinauer Associates Inc.: Sunderland, MA, USA, 1984. [Google Scholar]
- Kirillova, I.; Teliban, A.; Gorodetskaya, N.; Grossmann, L.; Bartsch, F.; Rausch, V.H.; Struck, M.; Tode, J.; Baron, R.; Jänig, W. Effect of local and intravenous lidocaine on ongoing activity in injured afferent nerve fibers. Pain 2011, 152, 1562–1571. [Google Scholar] [CrossRef]
- Shin, J.W.; Pancaro, C.; Wang, C.F.; Gerner, P. Low-dose systemic bupivacaine prevents the development of allodynia after thoracotomy in rats. Anesth. Analg. 2008, 107, 1587–1591. [Google Scholar] [CrossRef]
- Delorme, C.; Navez, M.L.; Legout, V.; Deleens, R.; Moyse, D. Treatment of neuropathic pain with 5% lidocaine-medicated plaster: Five years of clinical experience. Pain Res. Manag. 2011, 16, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Kalso, E.; Tramèr, M.R.; McQuay, H.J.; Moore, R.A. Systemic local-anaesthetic-type drugs in chronic pain: A systematic review. Eur. J. Pain 1998, 2, 3–14. [Google Scholar] [CrossRef]
- Tremont-Lukats, I.W.; Challapalli, V.; McNicol, E.D.; Lau, J.; Carr, D.B. Systemic administration of local anesthetics to relieve neuropathic pain: A systematic review and meta-analysis. Anesth. Analg. 2005, 101, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhou, X.; Zhou, Q.; Wang, H.; Wang, S.; Luo, K. Intra-venous lidocaine to relieve neuropathic pain: A systematic review and meta-analysis. Front. Neurol. 2019, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- Piao, L.-H.; Fujita, T.; Jiang, C.-Y.; Liu, T.; Yue, H.-Y.; Nakatsuka, T.; Kumamoto, E. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase. Biochem. Biophys. Res. Commun. 2009, 379, 980–984. [Google Scholar] [CrossRef]
- Piao, L.-H.; Fujita, T.; Yu, T.; Kumamoto, E. Presynaptic facilitation by tetracaine of glutamatergic spontaneous excitatory transmission in the rat spinal substantia gelatinosa—Involvement of TRPA1 channels. Brain Res. 2017, 1657, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Leffler, A.; Fischer, M.J.; Rehner, D.; Kienel, S.; Kistner, K.; Sauer, S.K.; Gavva, N.R.; Reeh, P.W.; Nau, C. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J. Clin. Investig. 2008, 118, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Leffler, A.; Lattrell, A.; Kronewald, S.; Niedermirtl, F.; Nau, C. Activation of TRPA1 by membrane permeable local anesthetics. Mol. Pain 2011, 7, 62. [Google Scholar] [CrossRef]
- Oda, A.; Iida, H.; Tanahashi, S.; Osawa, Y.; Yamaguchi, S.; Dohi, S. Effects of α2-adrenoceptor agonists on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglion neurons. Eur. J. Anaesthesiol. 2007, 24, 934–941. [Google Scholar] [CrossRef]
- Zhao, K.; Dong, Y.; Su, G.; Wang, T.; Ji, T.; Wu, N.; Cui, X.; Li, W.; Yang, Y.; Chen, X. Effect of systemic lidocaine on postoperative early recovery quality in patients undergoing supratentorial tumor resection. Drug Des. Dev. Ther. 2022, 16, 1171–1181. [Google Scholar] [CrossRef]
- Chan, V.W.S.; Weisbrod, M.J.; Kaszas, Z.; Dragomir, C. Comparison of ropivacaine and lidocaine for intravenous regional anesthesia in volunteers: A preliminary study on anesthetic efficacy and blood level. Anesthesiology 1999, 90, 1602–1608. [Google Scholar] [CrossRef]
- McClellan, K.J.; Faulds, D. Ropivacaine: An update of its use in regional anaesthesia. Drugs 2000, 60, 1065–1093. [Google Scholar] [CrossRef]
- Bader, A.M.; Datta, S.; Flanagan, H.; Covino, B.G. Comparison of bupivacaine- and ropivacaine-induced conduction blockade in the isolated rabbit vagus nerve. Anesth. Analg. 1989, 68, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz-Rastoder, E.; Gold, M.S.; Hough, K.A.; Gebhart, G.F.; Williams, B.A. Effect of adjuvant drugs on the action of local anesthetics in isolated rat sciatic nerves. Reg. Anesth. Pain Med. 2012, 37, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Lee-Son, S.; Wang, G.K.; Concus, A.; Crill, E.; Strichartz, G. Stereoselective inhibition of neuronal sodium channels by local anesthetics. Evidence for two sites of action? Anesthesiology 1992, 77, 324–335. [Google Scholar] [CrossRef]
- Foster, R.H.; Markham, A. Levobupivacaine: A review of its pharmacology and use as a local anaesthetic. Drugs 2000, 59, 551–579. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, M.; Nau, C.; Mok, W.M.; Strichartz, G. Potency of bupivacaine stereoisomers tested in vitro and in vivo: Biochemical, electrophysiological, and neurobehavioral studies. Anesthesiology 2000, 93, 744–755. [Google Scholar] [CrossRef] [Green Version]
- Stoetzer, C.; Martell, C.; de la Roche, J.; Leffler, A. Inhibition of voltage-gated Na+ channels by bupivacaine is enhanced by the adjuvants buprenorphine, ketamine, and clonidine. Reg. Anesth. Pain Med. 2017, 42, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Gerner, P.; Mujtaba, M.; Sinnott, C.J.; Wang, G.K. Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 2001, 94, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Bedford, J.A.; Turner, C.E.; Elsohly, H.N. Local anesthetic effects of cocaine and several extracts of the coca leaf (E. coca). Pharmacol. Biochem. Behav. 1984, 20, 819–821. [Google Scholar] [CrossRef]
- Pagala, M.K.D.; Venkatachari, S.A.T.; Herzlich, B.; Ravindran, K.; Namba, T.; Grob, D. Effect of cocaine on responses of mouse phrenic nerve-diaphragm preparation. Life Sci. 1991, 48, 795–802. [Google Scholar] [CrossRef]
- Carney, T.P. Alkaloids as local anesthetics. In The Alkaloids; Manske, R.H.F., Ed.; Academic Press: New York, NY, USA, 1955; Volume 5, pp. 211–227. [Google Scholar]
- Matthews, J.C.; Collins, A. Interactions of cocaine and cocaine congeners with sodium channels. Biochem. Pharmacol. 1983, 32, 455–460. [Google Scholar] [CrossRef]
- O’Leary, M.E.; Chahine, M. Cocaine binds to a common site on open and inactivated human heart (Nav1.5) sodium channels. J. Physiol. 2002, 541, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hariman, R.J.; Bauman, J.L. Cocaine concentration-effect relationship in the presence and absence of lidocaine: Evidence of competitive binding between cocaine and lidocaine. J. Pharmacol. Exp. Ther. 1996, 276, 568–577. [Google Scholar] [PubMed]
- Chen, Y.-H.; Lin, C.-H.; Lin, P.-L.; Tsai, M.-C. Cocaine elicits action potential bursts in a central snail neuron: The role of delayed rectifying K+ current. Neuroscience 2006, 138, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Štolc, S.; Mai, P.-M. Comparison of local anesthetic activity of pentacaine (trapencaine) and some of its derivatives by three different techniques. Pharmazie 1993, 48, 210–212. [Google Scholar] [PubMed]
- Tomohiro, D.; Mizuta, K.; Fujita, T.; Nishikubo, Y.; Kumamoto, E. Inhibition by capsaicin and its related vanilloids of compound action potentials in frog sciatic nerves. Life Sci. 2013, 92, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, J.F., IV; Lief, P.A.; Strichartz, G.R. The pH-dependent local anesthetic activity of diethylaminoethanol, a procaine metabolite. Anesthesiology 1988, 68, 501–506. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Sebastião, A.M. Antagonism of tetrodotoxin- and procaine-induced axonal blockade by adenine nucleotides in the frog sciatic nerve. Br. J. Pharmacol. 1984, 81, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Kalichman, M.W.; Moorhouse, D.F.; Powell, H.C.; Myers, R.R. Relative neural toxicity of local anesthetics. J. Neuropathol. Exp. Neurol. 1993, 52, 234–240. [Google Scholar] [CrossRef]
- Lee, H.-S. Recent advances in topical anesthesia. J. Dent. Anesth. Pain Med. 2016, 16, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, M.M.; Rasmussen, M.M.; Madsen, J.G.; Pedersen, M.; Lauridsen, H. Propofol (2, 6-diisopropylphenol) is an applicable immersion anesthetic in the axolotl with potential uses in hemodynamic and neurophysiological experiments. Regeneration 2017, 4, 124–131. [Google Scholar] [CrossRef]
- Guénette, S.A.; Giroux, M.-C.; Vachon, P. Pain perception and anaesthesia in research frogs. Exp. Anim. 2013, 62, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanable, J.W. Benzocaine: An excellent amphibian anesthetic. Axolotl Newsl. 1985, 14, 19–21. [Google Scholar]
- Starke, K.; Wagner, J.; Schümann, H.J. Adrenergic neuron blockade by clonidine: Comparison with guanethidine and local anesthetics. Arch. Int. Pharmacodyn. 1972, 195, 291–308. [Google Scholar] [PubMed]
- Gissen, A.J.; Covino, B.G.; Gregus, J. Differential sensitivities of mammalian nerve fibers to local anesthetic agents. Anesthesiology 1980, 53, 467–474. [Google Scholar] [CrossRef]
- Macdonald, R.L. Cellular effects of antiepileptic drugs. In Epilepsy: A Comprehensive Textbook; Engel, J., Jr., Pedley, T.A., Eds.; Lippincon-Raven Publishers: Philadelphia, PA, USA, 1997; pp. 1383–1391. [Google Scholar]
- Kubacka, M.; Rapacz, A.; Sałat, K.; Filipek, B.; Cios, A.; Pociecha, K.; Wyska, E.; Hubicka, U.; Żuromska-Witek, B.; Kwiecień, A.; et al. KM-416, a novel phenoxyalkylaminoalkanol derivative with anticonvulsant properties exerts analgesic, local anesthetic, and antidepressant-like activities. Pharmacodynamic, pharmacokinetic, and forced degradation studies. Eur. J. Pharmacol. 2020, 886, 173540. [Google Scholar] [CrossRef]
- Xie, X.; Dale, T.J.; John, V.H.; Cater, H.L.; Peakman, T.C.; Clare, J.J. Electrophysiological and pharmacological properties of the human brain type IIA Na+ channel expressed in a stable mammalian cell line. Pflüg. Arch. 2001, 441, 425–433. [Google Scholar] [CrossRef]
- McLean, M.J.; Macdonald, R.L. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther. 1986, 238, 727–738. [Google Scholar]
- Cruccu, G.; Gronseth, G.; Alksne, J.; Argoff, C.; Brainin, M.; Burchiel, K.; Nurmikko, T.; Zakrzewska, J.M. AAN-EFNS guidelines on trigeminal neuralgia management. Eur. J. Neurol. 2008, 15, 1013–1028. [Google Scholar] [CrossRef]
- Vargas-Espinosa, M.-L.; Sanmartí-García, G.; Vázquez-Delgado, E.; Gay-Escoda, C. Antiepileptic drugs for the treatment of neuropathic pain: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e786–e793. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.G.; Wang, C.M.; Cooper, B.R. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J. Pharmacol. Exp. Ther. 1993, 266, 829–835. [Google Scholar]
- Benes, J.; Parada, A.; Figueiredo, A.A.; Alves, P.C.; Freitas, A.P.; Learmonth, D.A.; Cunha, R.A.; Garrett, J.; Soares-da-Silva, P. Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives. J. Med. Chem. 1999, 42, 2582–2587. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Huang, C.-C.; Lin, M.-W.; Tsai, J.-J.; Wu, S.-N. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int. J. Neuropsychopharmacol. 2008, 11, 597–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-C. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol. Pharmacol. 1998, 54, 712–721. [Google Scholar]
- Molnár, P.; Erdö, S.L. Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons. Eur. J. Pharmacol. 1995, 273, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Sun, G.; Clare, J.J.; Werkman, T.R.; Wadman, W.J. Properties of human brain sodium channel α-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine. Br. J. Pharmacol. 2014, 171, 1054–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumcke, B.; Schwarz, J.R.; Stämpfli, R. A comparison of sodium currents in rat and frog myelinated nerve: Normal and modified sodium inactivation. J. Physiol. 1987, 382, 175–191. [Google Scholar] [CrossRef]
- Maneuf, Y.P.; Gonzalez, M.I.; Sutton, K.S.; Chung, F.-Z.; Pinnock, R.D.; Lee, K. Cellular and molecular action of the putative GABA-mimetic, gabapentin. Cell. Mol. Life Sci. 2003, 60, 742–750. [Google Scholar]
- Chen, J.; Li, L.; Chen, S.-R.; Chen, H.; Xie, J.-D.; Sirrieh, R.E.; MacLean, D.M.; Zhang, Y.; Zhou, M.-H.; Jayaraman, V.; et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018, 22, 2307–2321. [Google Scholar] [CrossRef] [Green Version]
- Zona, C.; Ciotti, M.T.; Avoli, M. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci. Lett. 1997, 231, 123–126. [Google Scholar] [CrossRef]
- Curia, G.; Aracri, P.; Colombo, E.; Scalmani, P.; Mantegazza, M.; Avanzini, G.; Franceschetti, S. Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br. J. Pharmacol. 2007, 150, 792–797. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Keane, P.E.; Meldrum, B.S.; Simiand, J.; Vernieres, J.C. Mechanism of anticonvulsant action of valproate. Prog. Neurobiol. 1982, 19, 315–359. [Google Scholar] [PubMed]
- Perucca, E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol. Res. 1997, 35, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.F.M.; Aroniadou-Anderjaska, V.; Li, H.; Rogawski, M.A. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J. Pharmacol. Exp. Ther. 2009, 330, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Fu, W.-M.; Chen, C.-C.; Su, M.-J.; Liou, H.-H. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008, 49, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Blackburn-Munro, G.; Ibsen, N.; Erichsen, H.K. A comparison of the anti-nociceptive effects of voltage-activated Na+ channel blockers in the formalin test. Eur. J. Pharmacol. 2002, 445, 231–238. [Google Scholar] [CrossRef]
- Shannon, H.E.; Eberle, E.L.; Peters, S.C. Comparison of the effects of anticonvulsant drugs with diverse mechanisms of action in the formalin test in rats. Neuropharmacology 2005, 48, 1012–1020. [Google Scholar] [CrossRef]
- Douglas-Hall, P.; Dzahini, O.; Gaughran, F.; Bile, A.; Taylor, D. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust. Ther. Adv. Psychopharmacol. 2017, 7, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Morselli, P.L. Carbamazepine: Absorption, distribution, and excretion. In Antiepileptic Drugs, 4th ed.; Levy, R.H., Mattson, R.H., Meldrum, B.S., Eds.; Raven Press: New York, NY, USA, 1995; pp. 515–528. [Google Scholar]
- Ardid, D.; Jourdan, D.; Mestre, C.; Villanueva, L.; Le Bars, D.; Eschalier, A. Involvement of bulbospinal pathways in the antinociceptive effect of clomipramine in the rat. Brain Res. 1995, 695, 253–256. [Google Scholar] [CrossRef]
- Max, M.B.; Lynch, S.A.; Muir, J.; Shoaf, S.E.; Smoller, B.; Dubner, R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med. 1992, 326, 1250–1256. [Google Scholar] [CrossRef]
- Anjaneyulu, M.; Chopra, K. Possible involvement of cholinergic and opioid receptor mechanisms in fluoxetine mediated antinociception response in streptozotocin-induced diabetic mice. Eur. J. Pharmacol. 2006, 538, 80–84. [Google Scholar] [CrossRef]
- Cervantes-Durán, C.; Rocha-González, H.I.; Granados-Soto, V. Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats. Neuroscience 2013, 252, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Ghelardini, C.; Galeotti, N.; Bartolini, A. Antinociception induced by amitriptyline and imipramine is mediated by α2A-adrenoceptors. Jpn. J. Pharmacol. 2000, 82, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, H.; Ögren, S.-O. Effects of antidepressant drugs on different receptors in the brain. Eur. J. Pharmacol. 1981, 70, 393–407. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.M.; Shelton, R.C. Drug therapy of depression and anxiety disorders. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill, Medical Publishing Division: New York, NY, USA, 2011; pp. 397–415. [Google Scholar]
- Wong, D.T.; Bymaster, F.P. Dual serotonin and noradrenaline uptake inhibitor class of antidepressants—Potential for greater efficacy or just hype? Prog. Drug Res. 2002, 58, 169–222. [Google Scholar] [PubMed]
- Traboulsie, A.; Chemin, J.; Kupfer, E.; Nargeot, J.; Lory, P. T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol. Pharmacol. 2006, 69, 1963–1968. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ye, Q.; Wang, W.; Yan, L.; Wang, Q.; Xiao, H.; Wan, Q. Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neurosci. Lett. 2012, 506, 307–311. [Google Scholar] [CrossRef]
- Reynolds, I.J.; Miller, R.J. Tricyclic antidepressants block N-methyl-D-aspartate receptors: Similarities to the action of zinc. Br. J. Pharmacol. 1988, 95, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Sernagor, E.; Kuhn, D.; Vyklicky, L., Jr.; Mayer, M.L. Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron 1989, 2, 1221–1227. [Google Scholar] [CrossRef]
- Watanabe, Y.; Saito, H.; Abe, K. Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices. Neuropharmacology 1993, 32, 479–486. [Google Scholar] [CrossRef]
- Barygin, O.I.; Nagaeva, E.I.; Tikhonov, D.B.; Belinskaya, D.A.; Vanchakova, N.P.; Shestakova, N.N. Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. Brain Res. 2017, 1660, 58–66. [Google Scholar] [CrossRef]
- Nagata, K.; Imai, T.; Yamashita, T.; Tsuda, M.; Tozaki-Saitoh, H.; Inoue, K. Antidepressants inhibit P2X4 receptor function: A possible involvement in neuropathic pain relief. Mol. Pain 2009, 5, 20. [Google Scholar] [CrossRef]
- Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; Megat, S.; Ceredig, R.A.; Ernst, C.; Turecki, G.; et al. A dual noradrenergic mechanism for the relief of neuropathic allodynia by the antidepressant drugs duloxetine and amitriptyline. J. Neurosci. 2018, 38, 9934–9954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Cudennec, C.; Castagné, V. Face-to-face comparison of the predictive validity of two models of neuropathic pain in the rat: Analgesic activity of pregabalin, tramadol and duloxetine. Eur. J. Pharmacol. 2014, 735, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T.; Bymaster, F.P.; Mayle, D.A.; Reid, L.R.; Krushinski, J.H.; Robertson, D.W. LY248686, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology 1993, 8, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, I.J.; Mease, P.J.; Smith, T.R.; Kajdasz, D.K.; Wohlreich, M.M.; Detke, M.J.; Walker, D.J.; Chappell, A.S.; Arnold, L.M. Efficacy and safety of duloxetine for treatment of fibromyalgia in patients with or without major depressive disorder: Results from a 6-month, randomized, double-blind, placebo-controlled, fixed-dose trial. Pain 2008, 136, 432–444. [Google Scholar] [CrossRef]
- Müller, N.; Schennach, R.; Riedel, M.; Möller, H.-J. Duloxetine in the treatment of major psychiatric and neuropathic disorders. Expert Rev. Neurother. 2008, 8, 527–536. [Google Scholar] [CrossRef]
- Stark, P.; Fuller, R.W.; Wong, D.T. The pharmacologic profile of fluoxetine. J. Clin. Psychiatry 1985, 46, 7–13. [Google Scholar]
- Korzeniewska-Rybicka, I.; Płaźnik, A. Analgesic effect of antidepressant drugs. Pharmacol. Biochem. Behav. 1998, 59, 331–338. [Google Scholar] [CrossRef]
- Richeimer, S.H.; Bajwa, Z.H.; Kahraman, S.S.; Ransil, B.J.; Warfield, C.A. Utilization patterns of tricyclic antidepressants in a multidisciplinary pain clinic: A survey. Clin. J. Pain 1997, 13, 324–329. [Google Scholar] [CrossRef]
- Okuda, K.; Takanishi, T.; Yoshimoto, K.; Ueda, S. Trazodone hydrochloride attenuates thermal hyperalgesia in a chronic constriction injury rat model. Eur. J. Anaesthesiol. 2003, 20, 409–415. [Google Scholar] [CrossRef]
- Richelson, E.; Pfenning, M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. Eur. J. Pharmacol. 1984, 104, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Backer, M.M.; Herman, I.; Shamir, D.; Boniel, T.; Pick, C.G. The antinociceptive effect of trazodone in mice is mediated through both µ-opioid and serotonergic mechanisms. Behav. Brain Res. 2000, 114, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Davidoff, G.; Guarracini, M.; Roth, E.; Sliwa, J.; Yarkony, G. Trazodone hydrochloride in the treatment of dysesthetic pain in traumatic myelopathy: A randomized, double-blind, placebo-controlled study. Pain 1987, 29, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Baastrup, C.; Finnerup, N.B. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008, 22, 455–475. [Google Scholar] [CrossRef]
- Stoetzer, C.; Papenberg, B.; Doll, T.; Völker, M.; Heineke, J.; Stoetzer, M.; Wegner, F.; Leffler, A. Differential inhibition of cardiac and neuronal Na+ channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine. Eur. J. Pharmacol. 2016, 783, 1–10. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Calderon, J.; Wang, G.K. Block of neuronal Na+ channels by antidepressant duloxetine in a state-dependent manner. Anesthesiology 2010, 113, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Pancrazio, J.J.; Kamatchi, G.L.; Roscoe, A.K.; Lynch, C., 3rd. Inhibition of neuronal Na+ channels by antidepressant drugs. J. Pharmacol. Exp. Ther. 1998, 284, 208–214. [Google Scholar]
- Ishii, Y.; Sumi, T. Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na+ channels. Eur. J. Pharmacol. 1992, 221, 377–380. [Google Scholar] [CrossRef]
- Leffler, A.; Reiprich, A.; Mohapatra, D.P.; Nau, C. Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-resistant Nav1.8 than in TTX-sensitive Na+ channels. J. Pharmacol. Exp. Ther. 2007, 320, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, G.M.; Blanche, T.; Mansfield, K.; Tran, Y. Differential blockade of neuronal voltage-gated Na+ and K+ channels by antidepressant drugs. Eur. J. Pharmacol. 2002, 452, 35–48. [Google Scholar] [CrossRef]
- Song, J.-H.; Ham, S.-S.; Shin, Y.-K.; Lee, C.-S. Amitriptyline modulation of Na+ channels in rat dorsal root ganglion neurons. Eur. J. Pharmacol. 2000, 401, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.K.; Russell, C.; Wang, S.-Y. State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain 2004, 110, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, Q.; Fu, Q.; Ye, Q.; Xiao, H.; Wan, Q. Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Res. 2010, 1336, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dick, I.E.; Brochu, R.M.; Purohit, Y.; Kaczorowski, G.J.; Martin, W.J.; Priest, B.T. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J. Pain 2007, 8, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, X.; Pan, M.; Dai, W.; Dong, Z.; Wang, X.; Liu, R.; Zheng, J.; Yu, S. Blockade of Nav1.8 currents in nociceptive trigeminal neurons contributes to anti-trigeminovascular nociceptive effect of amitriptyline. Neuromol. Med. 2014, 16, 308–321. [Google Scholar] [CrossRef]
- Catterall, W.A.; Mackie, K. Local anesthetics. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill, Medical Publishing Division: New York, NY, USA, 2011; pp. 565–582. [Google Scholar]
- Caruso, R.; Ostuzzi, G.; Turrini, G.; Ballette, F.; Recla, E.; Dall’Olio, R.; Croce, E.; Casoni, B.; Grassi, L.; Barbui, C. Beyond pain: Can antidepressants improve depressive symptoms and quality of life in patients with neuropathic pain? A systematic review and meta-analysis. Pain 2019, 160, 2186–2198. [Google Scholar] [CrossRef]
- Mika, J.; Zychowska, M.; Makuch, W.; Rojewska, E.; Przewlocka, B. Neuronal and immunological basis of action of antidepressants in chronic pain—Clinical and experimental studies. Pharmacol. Rep. 2013, 65, 1611–1621. [Google Scholar] [CrossRef]
- Banafshe, H.R.; Hajhashemi, V.; Minaiyan, M.; Mesdaghinia, A.; Abed, A. Antinociceptive effects of maprotiline in a rat model of peripheral neuropathic pain: Possible involvement of opioid system. Iran. J. Basic Med. Sci. 2015, 18, 752–757. [Google Scholar] [CrossRef]
- Bhana, N.; Goa, K.L.; McClellan, K.J. Dexmedetomidine. Drugs 2000, 59, 263–268. [Google Scholar] [CrossRef]
- Costa-Pereira, J.T.; Ribeiro, J.; Martins, I.; Tavares, I. Role of spinal cord α2-adrenoreceptors in noradrenergic inhibition of nociceptive transmission during chemotherapy-induced peripheral neuropathy. Front. Neurosci. 2020, 13, 1413. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Zornow, M.H.; Yaksh, T.L.; Peterson, B.M. Antinociceptive properties of intrathecal dexmedetomidine in rats. Eur. J. Pharmacol. 1991, 192, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Yaksh, T.L. Relative efficacy of spinal alpha-2 agonists, dexmedetomidine, clonidine and ST-91, determined in vivo by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, an irreversible antagonist. J. Pharmacol. Exp. Ther. 1991, 258, 438–446. [Google Scholar] [PubMed]
- Filos, K.S.; Goudas, L.C.; Patroni, O.; Polyzou, V. Hemodynamic and analgesic profile after intrathecal clonidine in humans. A dose-response study. Anesthesiology 1994, 81, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.F.; Kalso, E.A.; McQuay, H.J.; Dickenson, A.H. The antinociceptive actions of dexmedetomidine on dorsal horn neuronal responses in the anaesthetized rat. Eur. J. Pharmacol. 1992, 215, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Brummett, C.M.; Norat, M.A.; Palmisano, J.M.; Lydic, R. Perineural administration of dexmedetomidine in combination with bupivacaine enhances sensory and motor blockade in sciatic nerve block without inducing neurotoxicity in rat. Anesthesiology 2008, 109, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calasans-Maia, J.A.; Zapata-Sudo, G.; Sudo, R.T. Dexmedetomidine prolongs spinal anaesthesia induced by levobupivacaine 0.5% in guinea-pigs. J. Pharm. Pharmacol. 2005, 57, 1415–1420. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Sunada, K. Adding dexmedetomidine to articaine increases the latency of thermal antinociception in rats. Anesth. Prog. 2020, 67, 72–78. [Google Scholar] [CrossRef]
- Marolf, V.; Ida, K.K.; Siluk, D.; Struck-Lewicka, W.; Markuszewski, M.J.; Sandersen, C. Effects of perineural administration of ropivacaine combined with perineural or intravenous administration of dexmedetomidine for sciatic and saphenous nerve blocks in dogs. Am. J. Vet. Res. 2021, 82, 449–458. [Google Scholar] [CrossRef]
- Kanazi, G.E.; Aouad, M.T.; Jabbour-Khoury, S.I.; Al Jazzar, M.D.; Alameddine, M.M.; Al-Yaman, R.; Bulbul, M.; Baraka, A.S. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anaesthesiol. Scand. 2006, 50, 222–227. [Google Scholar] [CrossRef]
- Madan, R.; Bharti, N.; Shende, D.; Khokhar, S.K.; Kaul, H.L. A dose response study of clonidine with local anesthetic mixture for peribulbar block: A comparison of three doses. Anesth. Analg. 2001, 93, 1593–1597. [Google Scholar] [CrossRef]
- Memiş, D.; Turan, A.; Karamanlioĝlu, B.; Pamukçu, Z.; Kurt, I. Adding dexmedetomidine to lidocaine for intravenous regional anesthesia. Anesth. Analg. 2004, 98, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Singelyn, F.J.; Gouverneur, J.-M.; Robert, A. A minimum dose of clonidine added to mepivacaine prolongs the duration of anesthesia and analgesia after axillary brachial plexus block. Anesth. Analg. 1996, 83, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Tschernko, E.M.; Klepetko, H.; Gruber, E.; Kritzinger, M.; Klimscha, W.; Jandrasits, O.; Haider, W. Clonidine added to the anesthetic solution enhances analgesia and improves oxygenation after intercostal nerve block for thoracotomy. Anesth. Analg. 1998, 87, 107–111. [Google Scholar] [CrossRef]
- Mohyiedin, H.; Kamelia, A.A.; Ekram, F.S.; Al Shaimaa, A.K. The effect of various additives to local anesthetics on the duration of analgesia of supraclavicular brachial plexus block. J. Anesth. Intensive Care Med. 2019, 9, 555756. [Google Scholar]
- Ouchi, K. Dexmedetomidine 2 ppm is appropriate for the enhancement effect of local anesthetic action of lidocaine in inferior alveolar nerve block: A preliminary, randomized cross-over study. Clin. J. Pain 2020, 36, 618–625. [Google Scholar] [CrossRef]
- Sane, S.; Shokouhi, S.; Golabi, P.; Rezaeian, M.; Kazemi Haki, B. The effect of dexmedetomidine in combination with bupivacaine on sensory and motor block time and pain score in supraclavicular block. Pain Res. Manag. 2021, 2021, 8858312. [Google Scholar] [CrossRef]
- Eisenach, J.C.; de Kock, M.; Klimscha, W. α2-Adrenergic agonists for regional anesthesia. A clinical review of clonidine (1984–1995). Anesthesiology 1996, 85, 655–674. [Google Scholar] [CrossRef]
- Concepcion, M.; Maddi, R.; Francis, D.; Rocco, A.G.; Murray, E.; Covino, B.G. Vasoconstrictors in spinal anesthesia with tetracaine—A comparison of epinephrine and phenylephrine. Anesth. Analg. 1984, 63, 134–138. [Google Scholar] [CrossRef]
- Vaida, G.T.; Moss, P.; Capan, L.M.; Turndorf, H. Prolongation of lidocaine spinal anesthesia with phenylephrine. Anesth. Analg. 1986, 65, 781–785. [Google Scholar] [CrossRef]
- Gaumann, D.M.; Brunet, P.C.; Jirounek, P. Clonidine enhances the effects of lidocaine on C-fiber action potential. Anesth. Analg. 1992, 74, 719–725. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Kumamoto, E.; Furue, H.; Yoshimura, M. α2 Adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 2003, 98, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-Z.; Li, D.-P.; Pan, H.-L. Inhibition of glutamatergic synaptic input to spinal lamina IIo neurons by presynaptic α2-adrenergic receptors. J. Neurophysiol. 2002, 87, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, J.F., IV; Strichartz, G.R. The α2-adrenergic agonists clonidine and guanfacine produce tonic and phasic block of conduction in rat sciatic nerve fibers. Anesth. Analg. 1993, 76, 295–301. [Google Scholar] [PubMed]
- Ishii, H.; Kohno, T.; Yamakura, T.; Ikoma, M.; Baba, H. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. Eur. J. Neurosci. 2008, 27, 3182–3190. [Google Scholar] [CrossRef] [PubMed]
- Yoshitomi, T.; Kohjitani, A.; Maeda, S.; Higuchi, H.; Shimada, M.; Miyawaki, T. Dexmedetomidine enhances the local anesthetic action of lidocaine via an α-2A adrenoceptor. Anesth. Analg. 2008, 107, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, S.A.; Sayed, D.M.; El Sherif, F.A.; Abd El-Rahman, A.M. Effect of local wound infiltration with ketamine versus dexmedetomidine on postoperative pain and stress after abdominal hysterectomy, a randomized trial. Eur. J. Pain 2018, 22, 951–960. [Google Scholar] [CrossRef]
- Coughlan, M.G.; Lee, J.G.; Bosnjak, Z.J.; Schmeling, W.T.; Kampine, J.P.; Warltier, D.C. Direct coronary and cerebral vascular responses to dexmedetomidine. Significance of endogenous nitric oxide synthesis. Anesthesiology 1992, 77, 998–1006. [Google Scholar] [CrossRef]
- Correa-Sales, C.; Rabin, B.C.; Maze, M. A hypnotic response to dexmedetomidine, an α2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992, 76, 948–952. [Google Scholar] [CrossRef]
- Sjöholm, B.; Voutilainen, R.; Luomala, K.; Savola, J.-M.; Scheinin, M. Characterization of [3H]atipamezole as a radioligand for α2-adrenoceptors. Eur. J. Pharmacol. 1992, 215, 109–117. [Google Scholar] [CrossRef]
- MacDonald, E.; Kobilka, B.K.; Scheinin, M. Gene targeting-homing in on α2-adrenoceptor-subtype function. Trends Pharmacol. Sci. 1997, 18, 211–219. [Google Scholar] [CrossRef]
- Virtanen, R. Pharmacological profiles of medetomidine and its antagonist, atipamezole. Acta Vet. Scand. 1989, 85, 29–37. [Google Scholar]
- Bylund, D.B.; Eikenberg, D.C.; Hieble, J.P.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Molinoff, P.B.; Ruffolo, R.R.; Trendelenburg, U. International union of pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 1994, 46, 121–136. [Google Scholar] [PubMed]
- Chen, B.-S.; Peng, H.; Wu, S.-N. Dexmedetomidine, an α2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current. Br. J. Anaesth. 2009, 103, 244–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, T.J.; Hall, J.E.; Barney, J.A.; Uhrich, T.D.; Colinco, M.D. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000, 93, 382–394. [Google Scholar] [CrossRef]
- Slingsby, L.S.; Taylor, P.M. Thermal antinociception after dexmedetomidine administration in cats: A dose-finding study. J. Vet. Pharmacol. Ther. 2008, 31, 135–142. [Google Scholar] [CrossRef]
- Bharti, N.; Sardana, D.K.; Bala, I. The analgesic efficacy of dexmedetomidine as an adjunct to local anesthetics in supraclavicular brachial plexus block: A randomized controlled trial. Anesth. Analg. 2015, 121, 1655–1660. [Google Scholar] [CrossRef]
- Nassar, M.A.; Stirling, L.C.; Forlani, G.; Baker, M.D.; Matthews, E.A.; Dickenson, A.H.; Wood, J.N. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. USA 2004, 101, 12706–12711. [Google Scholar] [CrossRef] [Green Version]
- Patapoutian, A.; Tate, S.; Woolf, C.J. Transient receptor potential channels: Targeting pain at the source. Nat. Rev. Drug Discov. 2009, 8, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 2013, 29, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fujita, T.; Yasuda, H.; Kumamoto, E. Spontaneous excitatory transmission enhancement produced by linalool and its isomer geraniol in rat spinal substantia gelatinosa neurons—Involvement of transient receptor potential channels. Phytomed. Plus 2022, 2, 100155. [Google Scholar] [CrossRef]
- Kumamoto, E.; Fujita, T.; Jiang, C.-Y. TRP channels involved in spontaneous L-glutamate release enhancement in the adult rat spinal substantia gelatinosa. Cells 2014, 3, 331–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumamoto, E.; Fujita, T. Differential activation of TRP channels in the adult rat spinal substantia gelatinosa by stereoisomers of plant-derived chemicals. Pharmaceuticals 2016, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, A.G.; Quintans, J.S.S.; Quintans-Júnior, L.J. Monoterpenes with analgesic activity—A systematic review. Phytother. Res. 2013, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H. Anesthetic agents of plant origin: A review of phytochemicals with anesthetic activity. Molecules 2017, 22, 1369. [Google Scholar] [CrossRef] [Green Version]
- Nolano, M.; Simone, D.A.; Wendelschafer-Crabb, G.; Johnson, T.; Hazen, E.; Kennedy, W.R. Topical capsaicin in humans: Parallel loss of epidermal nerve fibers and pain sensation. Pain 1999, 81, 135–145. [Google Scholar] [CrossRef]
- Malmberg, A.B.; Mizisin, A.P.; Calcutt, N.A.; von Stein, T.; Robbins, W.R.; Bley, K.R. Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 2004, 111, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Mizuta, K.; Fujita, T.; Kumamoto, E. Inhibition by menthol and its related chemicals of compound action potentials in frog sciatic nerves. Life Sci. 2013, 92, 359–367. [Google Scholar] [CrossRef]
- Matsushita, A.; Ohtsubo, S.; Fujita, T.; Kumamoto, E. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve. Biochem. Biophys. Res. Commun. 2013, 434, 179–184. [Google Scholar] [CrossRef]
- Ohtsubo, S.; Fujita, T.; Matsushita, A.; Kumamoto, E. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures. Pharmacol. Res. Perspect. 2015, 3, e00127. [Google Scholar] [CrossRef]
- Lundbæk, J.A.; Birn, P.; Tape, S.E.; Toombes, G.E.S.; Søgaard, R.; Koeppe II, R.E.; Gruner, S.M.; Hansen, A.J.; Andersen, O.S. Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol. Pharmacol. 2005, 68, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Cao, X.; Xie, H.; Yang, R.; Lei, G.; Li, F.; Li, A.; Liu, C.; Liu, L. Effects of capsaicin on VGSCs in TRPV1−/− mice. Brain Res. 2007, 1163, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Mitchell, J.; Wang, G.K. Preferential block of inactivation-deficient Na+ currents by capsaicin reveals a non-TRPV1 receptor within the Na+ channel. Pain 2007, 127, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.S.; Kim, T.H.; Lim, J.-M.; Song, J.-H. Effects of eugenol on Na+ currents in rat dorsal root ganglion neurons. Brain Res. 2008, 1243, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Haeseler, G.; Maue, D.; Grosskreutz, J.; Bufler, J.; Nentwig, B.; Piepenbrock, S.; Dengler, R.; Leuwer, M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anaesthesiol. 2002, 19, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Joca, H.C.; Cruz-Mendes, Y.; Oliveira-Abreu, K.; Maia-Joca, R.P.M.; Barbosa, R.; Lemos, T.L.; Lacerda Beirão, P.S.; Leal-Cardoso, J.H. Carvacrol decreases neuronal excitability by inhibition of voltage-gated sodium channels. J. Nat. Prod. 2012, 75, 1511–1517. [Google Scholar] [CrossRef]
- Leal-Cardoso, J.H.; da Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; dos Santos-Nascimento, T.; Joca, H.C.; de Macedo, F.H.P.; de Albuquerque-Neto, P.M.; Magalhães, P.J.C.; Lahlou, S.; Cruz, J.S.; et al. Linalool blocks excitability in peripheral nerves and voltage-dependent Na+ current in dissociated dorsal root ganglia neurons. Eur. J. Pharmacol. 2010, 645, 86–93. [Google Scholar] [CrossRef]
- De Araújo, D.A.M.; Freitas, C.; Cruz, J.S. Essential oils components as a new path to understand ion channel molecular pharmacology. Life Sci. 2011, 89, 540–544. [Google Scholar] [CrossRef]
- Joca, H.C.; Vieira, D.C.O.; Vasconcelos, A.P.; Araújo, D.A.M.; Cruz, J.S. Carvacrol modulates voltage-gated sodium channels kinetics in dorsal root ganglia. Eur. J. Pharmacol. 2015, 756, 22–29. [Google Scholar] [CrossRef]
- Nozoe, T. Über die farbstoffe im holzteile des “hinoki” baumes. I. Hinokitin und hinokitiol. Bull. Chem. Soc. Jpn. 1936, 11, 295–298. [Google Scholar] [CrossRef]
- Magori, N.; Fujita, T.; Kumamoto, E. Hinokitiol inhibits compound action potentials in the frog sciatic nerve. Eur. J. Pharmacol. 2018, 819, 254–260. [Google Scholar] [CrossRef]
- Baba, T.; Nakano, H.; Tamai, K.; Sawamura, D.; Hanada, K.; Hashimoto, I.; Arima, Y. Inhibitory effect of β-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes. J. Investig. Dermatol. 1998, 110, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.-H.; Lin, D.-J.; Chang, K.-W.; Hsia, S.-M.; Ko, S.-Y.; Lee, S.-Y.; Hsue, S.-S.; Wang, T.-H.; Chen, Y.-L.; Shieh, T.-M. Evaluation physical characteristics and comparison antimicrobial and anti-inflammation potentials of dental root canal sealers containing hinokitiol in vitro. PLoS ONE 2014, 9, e94941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, Y.; Matsumura, E.; Okabe, T.; Shibata, M.; Sugiura, M.; Ohe, T.; Tsujibo, H.; Ishida, N.; Inamori, Y. Biological activity of tropolone. Biol. Pharm. Bull. 2003, 26, 1487–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, Y.; Matsumura, E.; Okabe, T.; Fukui, T.; Ohe, T.; Ishida, N.; Inamori, Y. Biological activity of β-dolabrin, γ-thujaplicin, and 4-acetyltropolone, hinokitiol-related compounds. Biol. Pharm. Bull. 2004, 27, 1666–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamato, M.; Ando, J.; Sakaki, K.; Hashigaki, K.; Wataya, Y.; Tsukagoshi, S.; Tashiro, T.; Tsuruo, T. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J. Med. Chem. 1992, 35, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Inamori, Y.; Tsujibo, H.; Ohishi, H.; Ishii, F.; Mizugaki, M.; Aso, H.; Ishida, N. Cytotoxic effect of hinokitiol and tropolone on the growth of mammalian cells and on blastogenesis of mouse splenic T cells. Biol. Pharm. Bull. 1993, 16, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Yasumoto, E.; Nakano, K.; Nakayachi, T.; Morshed, S.R.; Hashimoto, K.; Kikuchi, H.; Nishikawa, H.; Kawase, M.; Sakagami, H. Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res. 2004, 24, 755–762. [Google Scholar]
- Nagao, Y.; Sata, M. Effect of oral care gel on the quality of life for oral lichen planus in patients with chronic HCV infection. Virol. J. 2011, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- James, R.; Glen, J.B. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J. Med. Chem. 1980, 23, 1350–1357. [Google Scholar] [CrossRef]
- Doze, V.A.; Westphal, L.M.; White, P.F. Comparison of propofol with methohexital for outpatient anesthesia. Anesth. Analg. 1986, 65, 1189–1195. [Google Scholar] [CrossRef]
- Shafer, A.; Doze, V.A.; Shafer, S.L.; White, P.F. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988, 69, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Antkowiak, B.; Rammes, G. GABA(A) receptor-targeted drug development—New perspectives in perioperative anesthesia. Expert Opin. Drug Discov. 2019, 14, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, I.; Xanthos, T.; Koudouna, E.; Perrea, D.; Klonaris, C.; Katsargyris, A.; Papadimitriou, L. Propofol: A review of its non-anaesthetic effects. Eur. J. Pharmacol. 2009, 605, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, S.J.; Greger, B.; Parker, R.A.; Ogura, T.; Obara, S.; Egan, T.D.; House, P.A. The effects of propofol on local field potential spectra, action potential firing rate, and their temporal relationship in humans and felines. Front. Hum. Neurosci. 2013, 7, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.-Q.; Sun, X.; Fang, H. A mechanism study on propofol’s action on middle latency auditory evoked potential by neurons in ventral partition of medial geniculate body in rats. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1859–1868. [Google Scholar] [PubMed]
- Takazawa, T.; Furue, H.; Nishikawa, K.; Uta, D.; Takeshima, K.; Goto, F.; Yoshimura, M. Actions of propofol on substantia gelatinosa neurones in rat spinal cord revealed by in vitro and in vivo patch-clamp recordings. Eur. J. Neurosci. 2009, 29, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Hijikata, Y. Analgesic treatment with Kampo prescription. Expert Rev. Neurother. 2006, 6, 795–802. [Google Scholar] [CrossRef]
- Kono, T.; Kanematsu, T.; Kitajima, M. Exodus of Kampo, traditional Japanese medicine, from the complementary and alternative medicines: Is it time yet? Surgery 2009, 146, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Motoo, Y.; Arai, I.; Hyodo, I.; Tsutani, K. Current status of Kampo (Japanese herbal) medicines in Japanese clinical practice guidelines. Complement. Ther. Med. 2009, 17, 147–154. [Google Scholar] [CrossRef]
- Mochiki, E.; Yanai, M.; Ohno, T.; Kuwano, H. The effect of traditional Japanese medicine (Kampo) on gastrointestinal function. Surg. Today 2010, 40, 1105–1111. [Google Scholar] [CrossRef]
- Wachtel-Galor, S.; Benzie, I.F.F. Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Chapter 1; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Sunagawa, M.; Takayama, Y.; Kato, M.; Tanaka, M.; Fukuoka, S.; Okumo, T.; Tsukada, M.; Yamaguchi, K. Kampo formulae for the treatment of neuropathic pain—Especially the mechanism of action of Yokukansan. Front. Mol. Neurosci. 2021, 14, 705023. [Google Scholar] [CrossRef]
- Matsushita, A.; Fujita, T.; Ohtsubo, S.; Kumamoto, E. Traditional Japanese medicines inhibit compound action potentials in the frog sciatic nerve. J. Ethnopharmacol. 2016, 178, 272–280. [Google Scholar] [CrossRef]
- Fink, B.R.; Cairns, A.M. Differential slowing and block of conduction by lidocaine in individual afferent myelinated and unmyelinated axons. Anesthesiology 1984, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Brodin, P. Differential inhibition of A, B and C fibres in the rat vagus nerve by lidocaine, eugenol and formaldehyde. Arch. Oral Biol. 1985, 30, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Jang, I.-S. Indomethacin inhibits tetrodotoxin-resistant Na+ channels at acidic pH in rat nociceptive neurons. Neuropharmacology 2016, 105, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.K.; Mikusa, J.P.; Hernandez, G.; Baker, S.; Shieh, C.C.; Neelands, T.; Zhang, X.F.; Niforatos, W.; Kage, K.; Han, P.; et al. Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain 2006, 123, 75–82. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumamoto, E. Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction. Encyclopedia 2022, 2, 1902-1934. https://doi.org/10.3390/encyclopedia2040132
Kumamoto E. Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction. Encyclopedia. 2022; 2(4):1902-1934. https://doi.org/10.3390/encyclopedia2040132
Chicago/Turabian StyleKumamoto, Eiichi. 2022. "Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction" Encyclopedia 2, no. 4: 1902-1934. https://doi.org/10.3390/encyclopedia2040132
APA StyleKumamoto, E. (2022). Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction. Encyclopedia, 2(4), 1902-1934. https://doi.org/10.3390/encyclopedia2040132