A New Class of Separable Lagrangian Systems Generalizing Sawada–Kotera System
Abstract
:1. Introduction
2. Main Result
3. Two Lagrangians for the Sawada–Kotera Equations
4. Proof of the Main Theorem
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PDE | Partial Differential Equation |
References
- Aizawa, Y.; Saito, N. On the stability of isolating integrals. Effect of the perturbation in the potential function. J. Phys. Soc. Jpn. 1972, 32, 1636–1640. [Google Scholar] [CrossRef]
- Ballesteros, A.; Blasco, A. Integrable Hénon-Heiles Hamiltonians: A Poisson algebra approach. Ann. Phys. 2010, 325, 2787–2799. [Google Scholar] [CrossRef]
- Fordy, A.P. The Hénon-Heile system revisited. Phys. D 1991, 52, 204–210. [Google Scholar] [CrossRef]
- Sawada, K.; Kotera, T. A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-Like equation. Prog. Theor. Phys. 1974, 51, 1355. [Google Scholar] [CrossRef]
- Gu, C. Soliton Theory and Its Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Miura, R.M.; Gardner, C.S.; Kruskal, M.D. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 1968, 9, 1204–1209. [Google Scholar] [CrossRef]
- Kato, T. On nonlinear Schrödinger equations. Ann. Henri Poincaré 1987, 46, 113–129. [Google Scholar]
- Rubinstein, J. Sine-Gordon Equation. J. Math. Phys. 1970, 11, 258–266. [Google Scholar] [CrossRef]
- Muhammad, B.R.; Faiza, N.; Muhammad, A.; Magda, A.E.; Tahir, N.; Choon, K.C. Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods. AIMS Math. 2023, 12, 31268–31292. [Google Scholar]
- Blaszak, M. Lagrangian-Hamiltonian formulation for stationary flows of some class of nonlinear dynamical system. J. Phys. A Math. Gen. 1993, 26, L263. [Google Scholar] [CrossRef]
- Blaszak, M. Newton representation for stationary flows of some class of nonlinear dynamical systems. Phys. A Stat. Mech. Its Appl. 1995, 215, 201–208. [Google Scholar] [CrossRef]
- Wojciechowski, S. Separability of an integrable case of the Hénon-Heiles system. Phys. Lett. A 1984, 100, 277–278. [Google Scholar] [CrossRef]
- Hénon, M.; Heiles, C. The applicability of the third integral of motion: Some numerical experiments. Astron. J. 1964, 69, 73. [Google Scholar] [CrossRef]
- Ito, H. Non-integrability of Hénon-Heiles system and theorem of Ziglin. Kodai Math. J. 1985, 8, 120–138. [Google Scholar] [CrossRef]
- Boccaletti, D.; Pucacco, G. Theory of Orbits, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Churchill, R.C.; Rod, D.L. Geometrical aspects of Ziglin’s non-integrability theorem for complex Hamiltonian systems. J. Diff. Eqns. 1988, 76, 91–114. [Google Scholar] [CrossRef]
- Tabor, M. Chaos and Integrability in Nonlinear Dynamics, 1st ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Dorizzi, B.; Grammaticos, B.; Ramani, A. Integrability of Hamiltonians with third and fourth degree polynomial potentials. J. Math. Phys. 1983, 24, 2289–2295. [Google Scholar]
- Sottocornola, N. Separation coordinates in Hénon-Heiles systems. Phys. Lett. A 2019, 383, 126027. [Google Scholar] [CrossRef]
- Shampine, L.F. Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 1986, 12, 1287–1296. [Google Scholar] [CrossRef]
- Calogero, F. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 1971, 12, 419–436. [Google Scholar] [CrossRef]
- Gorni, G.; Zampieri, G. Lagrangian dynamics by nonlocal constants of motion. Discrete Contin. Dyn. Syst. Ser. S 2020, 13, 2751–2759. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorni, G.; Scomparin, M.; Zampieri, G. A New Class of Separable Lagrangian Systems Generalizing Sawada–Kotera System. Dynamics 2024, 4, 499-505. https://doi.org/10.3390/dynamics4030026
Gorni G, Scomparin M, Zampieri G. A New Class of Separable Lagrangian Systems Generalizing Sawada–Kotera System. Dynamics. 2024; 4(3):499-505. https://doi.org/10.3390/dynamics4030026
Chicago/Turabian StyleGorni, Gianluca, Mattia Scomparin, and Gaetano Zampieri. 2024. "A New Class of Separable Lagrangian Systems Generalizing Sawada–Kotera System" Dynamics 4, no. 3: 499-505. https://doi.org/10.3390/dynamics4030026
APA StyleGorni, G., Scomparin, M., & Zampieri, G. (2024). A New Class of Separable Lagrangian Systems Generalizing Sawada–Kotera System. Dynamics, 4(3), 499-505. https://doi.org/10.3390/dynamics4030026