Lid-Driven Cavity Flow Containing a Nanofluid
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Methods
4. Results and Discussion
4.1. Results for Case A
4.2. Results for Case B
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical report; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc. Libr. 1996, 457, 3–11. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.S.; Li, S.; Eastman, J. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Mass Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F.; Wu, Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Sivashanmugam, P. Application of Nanofluids in Heat Transfer; Kazi, S.N., Ed.; InTechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Cha, C.; Jaluria, Y. Recirculating mixed convection flow for energy extraction. Int. J. Heat Mass Transf. 1984, 27, 1801–1812. [Google Scholar] [CrossRef]
- Pilkington, L.A.B. Review lecture: The float glass process. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 314, 1–25. [Google Scholar]
- Boutra, A.; Ragui, K.; Benkahla, Y.K. Numerical study of mixed convection heat transfer in a lid-driven cavity filled with a nanofluid. Mech. Ind. 2015, 16, 505. [Google Scholar] [CrossRef]
- Talebi, F.; Mahmoudi, A.H.; Shahi, M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 79–90. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Arefmanesh, A.; Mahmoodi, M. Effects of uncertainties of viscosity models for Al2O3 water nanofluid on mixed convection numerical simulations. Int. J. Therm. Sci. 2011, 50, 1706–1719. [Google Scholar] [CrossRef]
- Maiga, S.E.B.; Nguyen, C.T.; Galanis, N.; Roy, G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004, 35, 543–557. [Google Scholar] [CrossRef]
- Sheikhzadeh, G.; Qomi, M.; Hajialigol, N.; Fattahi, A. Numerical study of mixed convection flows in a lid-driven enclosure filled with nanofluid using variable properties. Results Phys. 2012, 2, 5–13. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Abu-Nada, E. Mixed convection flow in single-and double-lid driven square cavities filled with water–Al2O3 nanofluid: Effect of viscosity models. Eur. J. Mech.-B/Fluids 2012, 36, 82–96. [Google Scholar] [CrossRef]
- Ghafouri, A.; Salari, M.; Jozaei, A.F. Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid. J. Appl. Mech. Tech. Phys. 2017, 58, 103–115. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Oxford University Press: Oxford, UK, 1904. [Google Scholar]
- Azzam, N.A. Numerical Solution of the Navier-Stokes Equations for the Flow in a Lid-Driven Cavity and a Cylinder Cascade; University of Manchester: Manchester, UK, 2003. [Google Scholar]
- Alkahtani, B. Numerical Solutions to the Navier-Stokes Equations in Two and Three Dimensions. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2013. [Google Scholar]
- Alruwaele, W. Study of Natural and Mixed Convection Flow of a Nanofluid. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2023. [Google Scholar]
- Pereira, R.M.S.; Gajjar, J.S.B. Solving Fluid Dynamics Problems with Matlab. In Engineering Education and Research Using MATLAB; Assi, A.H., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Ghia, U.; Ghia, K.N.; Shin, C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 1982, 48, 387–411. [Google Scholar] [CrossRef]
Property | Base Fluid | Nanoparticles |
---|---|---|
Specific Heat (J/kg/K) | 4179 | 765 |
Density (kg/m3) | 997.1 | 3970 |
Thermal Conductivity k (W/mK) | 0.613 | 25 |
Dynamic Viscosity (Ns m−2) | 8.91 × | |
Thermal Conductivity coefficient (1/K) | 2.1 × | 8.5 × |
Brinkman (Ri = 10) | Pak and Cho (Ri = 10) | Brinkman (Ri = 0.00001) | Pak and Cho (Ri = 0.00001) | |
---|---|---|---|---|
0 | −0.091846174 | −0.0918462 | −0.122128526 | −0.122128526 |
0.02 | −0.092820132 | −0.095179 | −0.122150678 | −0.120607855 |
0.04 | −0.092476482 | −0.0967305 | −0.122160357 | −0.119011494 |
0.06 | −0.092820132 | −0.0975358 | −0.122158149 | −0.117359139 |
0.08 | −0.093175107 | −0.0979984 | −0.122144814 | −0.115609126 |
0.1 | −0.09353645 | −0.0982861 | −0.122121257 | −0.113943122 |
Brinkman (Ri = 10) | Pak (Ri = 10) | Brinkman (Ri = 0.0001) | Pak (Ri = 0.0001) | |
---|---|---|---|---|
0 | −0.118110653 | −0.1181107 | −0.12117914 | −0.12117914 |
0.02 | −0.118396409 | −0.1094735 | −0.121281759 | −0.115927735 |
0.04 | −0.118559806 | −0.1054175 | −0.121326906 | −0.112511571 |
0.06 | −0.118604327 | −0.1032767 | −0.121326906 | −0.10953728 |
0.08 | −0.118534614 | −0.1020207 | −0.121254546 | −0.107110616 |
0.1 | −0.118356374 | −0.1012208 | −0.171907578 | −0.105025779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaele, W.H.R.; Gajjar, J.S.B. Lid-Driven Cavity Flow Containing a Nanofluid. Dynamics 2024, 4, 671-697. https://doi.org/10.3390/dynamics4030034
Alruwaele WHR, Gajjar JSB. Lid-Driven Cavity Flow Containing a Nanofluid. Dynamics. 2024; 4(3):671-697. https://doi.org/10.3390/dynamics4030034
Chicago/Turabian StyleAlruwaele, Wasaif H. R., and Jitesh S. B. Gajjar. 2024. "Lid-Driven Cavity Flow Containing a Nanofluid" Dynamics 4, no. 3: 671-697. https://doi.org/10.3390/dynamics4030034
APA StyleAlruwaele, W. H. R., & Gajjar, J. S. B. (2024). Lid-Driven Cavity Flow Containing a Nanofluid. Dynamics, 4(3), 671-697. https://doi.org/10.3390/dynamics4030034