The Prevalence of Viruses Related to the Production of Mussels and Oysters in Saldanha Bay: A Systematic Review
Abstract
:1. Introduction
Impact of Enteric Virus-Contaminated Shellfish on Public Health
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, C.Y.; Tran, N.; Pethiyagoda, S.; Crissman, C.C.; Sulser, T.B.; Phillips, M.J. Prospects and challenges of fish for food security in Africa. Glob. Food Secur. 2019, 20, 17–25. [Google Scholar] [CrossRef]
- Willer, D.F.; Aldridge, D.C. Microencapsulated diets to improve bivalve shellfish aquaculture for global food security. Glo. Food Secur. 2019, 23, 64–73. [Google Scholar] [CrossRef]
- McLeod, C.; Polo, D.; Le Saux, J.C.; Le Guyader, F.S. Depuration and relaying: A review on potential removal of norovirus from oysters. Compr. Rev. Food Sci. Food Saf. 2017, 16, 692–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.M.; Lemley, D.A.; Quigg, A.; Steppe, C.N. Impacts of urbanization and development on estuarine ecosystems and water quality. Estuaries Coast. 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Todd, P.A.; Heery, E.C.; Loke, L.H.L.; Thurstan, R.H.; Kotze, D.J.; Swan, C. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 2019, 128, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and threats of contamination on aquatic ecosystems. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K., Bhat, R., Qadri, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar]
- Brake, F.; Ross, T.; Holds, G.; Kiermeier, A.; McLeod, C. A survey of Australian oysters for the presence of human noroviruses. Food Microbiol. 2014, 44, 264–270. [Google Scholar] [CrossRef]
- Purpari, G.; Macaluso, G.; Di Bella, S.; Gucciardi, F.; Mira, F.; Di Marco, P.; Lastra, A.; Petersen, E.; La Rosa, G.; Guercio, A. Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. Int. J. Infect. Dis. 2019, 80, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Fusco, G.; Anastasio, A.; Kingsley, D.H.; Amoroso, M.G.; Pepe, T.; Fratamico, P.M.; Cioffi, B.; Rossi, R.; La Rosa, G.; Boccia, F. Detection of hepatitis A virus and other enteric viruses in shellfish collected in the Gulf of Naples, Italy. Int. J. Environ. Res. Public Health 2019, 16, 2588. [Google Scholar] [CrossRef] [Green Version]
- Fiorito, F.; Di Concilio, D.; Lambiase, S.; Amoroso, M.G.; Langellotti, A.L.; Martello, A.; Esposito, M.; Galiero, G.; Fusco, G. Oyster Crassostrea gigas, a good model for correlating viral and chemical contamination in the marine environment. Mar. Pollut. Bull. 2021, 172, 112825. [Google Scholar] [CrossRef]
- Strubbia, S.; Lyons, B.P.; Lee, R.J. Geographical and temporal variation of E. coli and norovirus in mussels. Mar. Pollut. Bull. 2016, 107, 66–70. [Google Scholar] [CrossRef]
- Savini, F.; Giacometti, F.; Tomasello, F.; Pollesel, M.; Piva, S.; Serraino, A.; De Cesare, A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss. Foods 2021, 10, 2444. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, F.S.; Le Saux, J.-C.; Ambert-Balay, K.; Krol, J.; Serais, O.; Parnaudeau, S.; Giraudon, H.; Delmas, G.; Pommepuy, M.; Pothier, P. Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. J. Clin. Microbiol. 2008, 46, 4011–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellou, M.; Kokkinos, P.; Vantarakis, A. Shellfish-borne viral outbreaks: A systematic review. Food Environ. Virol. 2013, 5, 13–23. [Google Scholar] [CrossRef]
- Woods, J.W.; Calci, K.R.; Marchant-Tambone, J.G.; Burkhardt Iii, W. Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US. Food Microbiol. 2016, 59, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Meghnath, K.; Hasselback, P.; McCormick, R.; Prystajecky, N.; Taylor, M.; McIntyre, L.; Man, S.; Whitfield, Y.; Warshawsky, B.; McKinley, M. Outbreaks of norovirus and acute gastroenteritis associated with British Columbia Oysters, 2016–2017. Food Environ. Virol. 2019, 11, 138–148. [Google Scholar] [CrossRef]
- Richards, G.P. Shellfish-associated enteric virus illness: Virus localization, disease outbreaks and prevention. Vir. Foods. 2016, 7, 185–207. [Google Scholar]
- Yan, B.; Chen, P.; Feng, Y.; Lu, J.; Meng, X.; Xu, Q.; Xu, A.; Zhang, L. A community-wide epidemic of hepatitis A virus genotype IA associated with consumption of shellfish in Yantai, eastern China, January to March 2020. Hum. Vac. Immunotherap. 2022, 18, 2106081. [Google Scholar] [CrossRef]
- Scavia, G.; Alfonsi, V.; Taffon, S.; Escher, M.; Bruni, R.; De Medici, D.; Di Pasquale, S.; GUizzardi, S.; Cappelletti, B.; Lannazzo, S.; et al. A large prolonged outbreak of hepatitis A associated with consumption of frozen berries, Italy, 2013–2014. J. Med. Microbiol. 2017, 66, 342–349. [Google Scholar] [CrossRef]
- Modiyinji, A.F.; Bigna, J.J.; Kenmoe, S.; Simo, F.B.N.; Amougou, M.A.; Ndangang, M.S.; Nola, M.; Njouom, R. Epidemiology of hepatitis E virus infection in animals in Africa: A systematic review and meta-analysis. BMC Vet. Res. 2021, 17, 50. [Google Scholar] [CrossRef]
- Simani, O.E.; Seipone, T.P.; Selabe, G.; Seheri, L.M.; Mphahlele, M.J.; Mayaphi, S.H.; Steele, A.D. Low seroprevalence of hepatitis E virus in pregnant women in an urban area near Pretoria, South Africa. IJID Reg. 2022, 2, 70–73. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Hassard, F.; Sharp, J.H.; Taft, H.; LeVay, L.; Harris, J.P.; McDonald, J.E.; Tuson, K.; Wilson, J.; Jones, D.L.; Malham, S.K. Critical review on the public health impact of norovirus contamination in shellfish and the environment: A UK perspective. Food Environ. Virol. 2017, 9, 123–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, R.C.; Rodrigues, H.; Sant’Ana, A.S. Consumption, knowledge, and food safety practices of Brazilian seafood consumers. Food Res. Int. 2020, 132, 109084. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Hewitt, J. Faecal contamination in bivalve molluscan shellfish: Can the application of the microbial source tracking method minimise public health risks. Curr. Opin. Environ. Sci. Health 2020, 16, 14–21. [Google Scholar] [CrossRef]
- Campos, C.J.A.; Lees, D.N. Environmental transmission of human noroviruses in shellfish waters. Appl. Environ. Microbiol. 2014, 80, 3552–3561. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.S.; Shim, K.B.; Kwon, J.Y.; Kim, P.H. Bacterial quality evaluation on the shellfish-producing area along the south coast of Korea and suitability for the consumption of shellfish products therein. Fish. Aquat. Sci. 2018, 21, 36. [Google Scholar] [CrossRef] [Green Version]
- Trottet, A.; George, C.; Drillet, G.; Lauro, F.M. Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2888–2929. [Google Scholar] [CrossRef]
- Vinothkannan, A.; Charles, P.E.; Rajaram, R. Consumption of metal-contaminated shellfish from the Cuddalore coast in Southeastern India poses a hazard to public health. Mar. Pollut. Bull. 2022, 181, 113827. [Google Scholar] [CrossRef]
- Upfold, N.S.; Luke, G.A.; Knox, C. Occurrence of human enteric viruses in water sources and shellfish: A focus on Africa. Food Environ. Virol. 2021, 13, 1–31. [Google Scholar]
- Lin, J.; Singh, A. Detection of human enteric viruses in Umgeni River, Durban, South Africa. J. Water Health 2015, 13, 1098–1112. [Google Scholar] [CrossRef] [Green Version]
- Adefisoye, M.A.; Nwodo, U.U.; Green, E.; Okoh, A.I. Quantitative PCR detection and characterisation of human adenovirus, rotavirus and hepatitis A virus in discharged effluents of two wastewater treatment facilities in the Eastern Cape, South Africa. Food Environ. Virol. 2016, 8, 262–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, V.; Lin, J. Viruses in the environment–presence and diversity of bacteriophage and enteric virus populations in the Umhlangane River, Durban, South Africa. J. Water Health 2017, 15, 966–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potgieter, N.; Karambwe, S.; Mudau, L.S.; Barnard, T.; Traore, A. Human enteric pathogens in eight rivers used as rural household drinking water sources in the northern region of South Africa. Int. J. Environ. Res. Public Health 2020, 17, 2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onosi, O.; Upfold, N.S.; Jukes, M.D.; Luke, G.A.; Knox, C. The first molecular detection of aichi virus 1 in raw sewage and mussels collected in South Africa. Food Environ. Virol. 2019, 11, 96–100. [Google Scholar] [CrossRef]
- Clark, B.; Hutchings, K.; Biccard, A.; Brown, E.; Dawson, J.; Laird, M.; Gihwala, K.; Swart, C.; Makhosonke, A.; Sedick, S.; et al. The State of Saldanha Bay and Langebaan Lagoon 2020, Technical Report. Report No. AEC 1876/1; Prepared by Anchor Environmental Consultants (Pty) Ltd. for the Saldanha Bay Water Quality Forum Trust; Anchor Environmental Consultants (Pty) Ltd.: Cape Town, South Africa, 2020. [Google Scholar]
- Gyawali, P.; Fletcher, G.C.; McCoubrey, D.-J.; Hewitt, J. Norovirus in shellfish: An overview of post-harvest treatments and their challenges. Food Cont. 2019, 99, 171–179. [Google Scholar] [CrossRef]
- Elbashir, S.; Parveen, S.; Schwarz, J.; Rippen, T.; Jahncke, M.; DePaola, A. Seafood pathogens and information on antimicrobial resistance: A review. Food Microbiol. 2018, 70, 85–93. [Google Scholar] [CrossRef]
- Randazzo, W.; Sánchez, G. Hepatitis A infections from food. J. Appl. Microbiol. 2020, 129, 1120–1132. [Google Scholar] [CrossRef]
- Suffredini, E.; Le, Q.H.; Di Pasquale, S.; Pham, T.D.; Vicenza, T.; Losardo, M.; To, K.A.; De Medici, D. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Cont. 2020, 108, 106828. [Google Scholar] [CrossRef]
- Rivadulla, E.; Varela, M.F.; Mesquita, J.R.; Nascimento, M.S.J.; Romalde, J.L. Detection of hepatitis E virus in shellfish harvesting areas from Galicia (Northwestern Spain). Viruses 2019, 11, 618. [Google Scholar] [CrossRef] [Green Version]
- Romalde, J.L.; Rivadulla, E.; Varela, M.F.; Barja, J.L. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J. Appl. Microbiol. 2018, 124, 943–957. [Google Scholar] [CrossRef]
- Bagulo, H.; Majekodunmi, A.O.; Welburn, S.C. Hepatitis E in sub Saharan Africa–A significant emerging disease. One Health 2020, 11, 100186. [Google Scholar] [CrossRef] [PubMed]
- Prabdial-Sing, N.; Motaze, V.; Manamela, J.; McCarthy, K. Establishment of outbreak thresholds for hepatitis A in South Africa using laboratory surveillance, 2017–2020. Viruses 2021, 13, 2470. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Proroga, Y.T.R.; De Medici, D.; Capuano, F.; Iaconelli, M.; Della Libera, S.; Suffredini, E. First detection of hepatitis E virus in shellfish and in seawater from production areas in Southern Italy. Food Environ. Virol. 2018, 10, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Suffredini, E.; Iaconelli, M.; Equestre, M.; Valdazo-González, B.; Ciccaglione, A.R.; Marcantonio, C.; Della Libera, S.; Bignami, F.; La Rosa, G. Genetic diversity among genogroup II noroviruses and progressive emergence of GII. 17 in wastewaters in Italy (2011–2016) revealed by next-generation and Sanger sequencing. Food Environ. Virol. 2018, 10, 141–150. [Google Scholar] [CrossRef]
- Le Guyader, F.S.; Bon, F.; DeMedici, D.; Parnaudeau, S.; Bertone, A.; Crudeli, S.; Doyle, A.; Zidane, M.; Suffredini, E.; Kohli, E. Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. J. Clin. Microbiol. 2006, 44, 3878–3882. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa-Okamoto, R.; Arita-Nishida, T.; Toda, S.; Kato, H.; Iwata, H.; Akiyama, M.; Nishio, O.; Kimura, H.; Noda, M.; Takeda, N. Detection of multiple sapovirus genotypes and genogroups in oyster-associated outbreaks. Jpn. J. Infect. Dis. 2009, 62, 63–66. [Google Scholar] [CrossRef]
- Varela, M.F.; Polo, D.; Romalde, J.L. Prevalence and genetic diversity of human sapoviruses in shellfish from commercial production areas in Galicia, Spain. Appl. Environ. Microbiol. 2016, 82, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Vasquez-García, A.; Mejia-Ballesteros, J.E.; de Godoy, S.H.S.; Barbieri, E.; de Sousa, R.L.M.; Fernandes, A.M. Norovirus GII and astrovirus in shellfish from a mangrove region in Cananéia, Brazil: Molecular detection and characterization. Brazil. J. Microbiol. 2022, 53, 317–326. [Google Scholar] [CrossRef]
- Keller, R.; Pratte-Santos, R.; Scarpati, K.; Martins, S.A.; Loss, S.M.; Fumian, T.M.; Miagostovich, M.P.; Cassini, S.T. Surveillance of enteric viruses and thermotolerant coliforms in surface water and bivalves from a mangrove estuary in southeastern Brazil. Food Environ. Virol. 2019, 11, 288–296. [Google Scholar] [CrossRef]
- Loury, P.; Le Guyader, F.S.; Le Saux, J.C.; Ambert-Balay, K.; Parrot, P.; Hubert, B. A norovirus oyster-related outbreak in a nursing home in France, January 2012. Epidemiol. Infect. 2015, 143, 2486–2493. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.G.; Lee, S.G.; Lee, M.Y.; Hur, E.S.; Lee, J.S.; Park, P.H.; Park, Y.B.; Yoon, M.H.; Paik, S.Y. An outbreak of norovirus infection associated with fermented oyster consumption in South Korea, 2013. Epidemiol. Infect. 2016, 144, 2759–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouillet, A.; Fournet, N.; Forgeot, C.; Jones, G.; Septfons, A.; Franconeri, L.; Ambert-Balay, K.; Schmidt, J.; Guérin, P.; de Valk, H. Large concomitant outbreaks of acute gastroenteritis emergency visits in adults and food-borne events suspected to be linked to raw shellfish, France, December 2019 to January 2020. Eurosurveillance 2020, 25, 2000060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Haz. Mat. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Li, J.-L.; Wang, P.-D.; Hozzein, W.N.; Li, W.-J. Environmental perspectives of microplastic pollution in the aquatic environment: A review. Mar. Life Sci. Technol. 2020, 2, 414–430. [Google Scholar] [CrossRef]
- Li, Q.; Ma, C.; Zhang, Q.; Shi, H. Microplastics in shellfish and implications for food safety. Curr. Opin. Food Sci. 2021, 40, 192–197. [Google Scholar] [CrossRef]
- Moresco, V.; Oliver, D.M.; Weidmann, M.; Matallana-Surget, S.; Quilliam, R.S. Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments. Environ. Res. 2021, 199, 111367. [Google Scholar] [CrossRef] [PubMed]
- Viray, M.A.; Hofmeister, M.G.; Johnston, D.I.; Krishnasamy, V.P.; Nichols, C.; Foster, M.A.; Balajadia, R.; Wise, M.E.; Manuzak, A.; Lin, Y. Public health investigation and response to a hepatitis A outbreak from imported scallops consumed raw—Hawaii, 2016. Epidemiol. Infect. 2019, 147, E28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purpari, G.; Di Bella, S.; Gucciardi, F.; Mira, F.; Barreca, S.; Di Paola, L.; Macaluso, G.; Di Marco, P.; Guercio, A. Detection of human enteric viruses in water and shellfish samples collected in Sicily (Italy). Biodivers. J. 2020, 10, 437–444. [Google Scholar] [CrossRef]
- Zelalem, A.; Sisay, M.; Vipham, J.L.; Abegaz, K.; Kebede, A.; Terefe, Y. The prevalence and antimicrobial resistance profiles of bacterial isolates from meat and meat products in Ethiopia: A systematic review and meta-analysis. Int. J. Food Contamin. 2019, 6, 1. [Google Scholar] [CrossRef]
- Bazzardi, R.; Fattaccio, M.C.; Salza, S.; Canu, A.; Marongiu, E.; Pisanu, M. Preliminary study on Norovirus, hepatitis A virus, Escherichia coli and their potential seasonality in shellfish from different growing and harvesting areas in Sardinia region. Ital. J. Food Saf. 2014, 3, 1601. [Google Scholar] [CrossRef]
- Bigoraj, E.; Kwit, E.; Chrobocińska, M.; Rzeżutka, A. Occurrence of norovirus and hepatitis A virus in wild mussels collected from the Baltic Sea. Food Environ. Virol. 2014, 6, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.J.A.; Kershaw, S.; Morgan, O.C.; Lees, D.N. Risk factors for norovirus contamination of shellfish water catchments in England and Wales. Int. J. Food Microbiol. 2017, 241, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, F.; Amoroso, M.G.; Lambiase, S.; Serpe, F.P.; Bruno, T.; Scaramuzzo, A.; Maglio, P.; Fusco, G.; Esposito, M. A relationship between environmental pollutants and enteric viruses in mussels (Mytilus galloprovincialis). Environ. Res. 2019, 169, 156–162. [Google Scholar] [CrossRef]
- Ilic, N.; Velebit, B.; Teodorovic, V.; Djordjevic, V.; Karabasil, N.; Vasilev, D.; Djuric, S.; Adzic, B.; Dimitrijevic, M. Influence of environmental conditions on norovirus presence in mussels harvested in Montenegro. Food Environ. Virol. 2017, 9, 406–414. [Google Scholar] [CrossRef]
- Le Mennec, C.; Parnaudeau, S.; Rumebe, M.; Le Saux, J.-C.; Piquet, J.-C.; Le Guyader, S.F. Follow-up of norovirus contamination in an oyster production area linked to repeated outbreaks. Food Environ. Virol. 2017, 9, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, G.; Guercio, A.; Gucciardi, F.; Di Bella, S.; La Rosa, G.; Suffredini, E.; Randazzo, W.; Purpari, G. Occurrence of Human Enteric Viruses in Shellfish along the Production and Distribution Chain in Sicily, Italy. Foods 2021, 10, 1384. [Google Scholar] [CrossRef]
- Mozgovoj, M.; Miño, S.; Barbieri, E.S.; Tort, F.L.; Victoria-Montero, M.; Frydman, C.; Cap, M.; Barón, P.J.; Colina, R.; Matthijnssens, J. GII. 4 human norovirus and G8P [1] bovine-like rotavirus in oysters (Crassostrea gigas) from Argentina. Int. J. Food Microbiol. 2022, 365, 109553. [Google Scholar] [CrossRef]
- Shin, S.B.; Oh, E.-G.; Yu, H.; Son, K.-T.; Lee, H.-J.; Park, J.Y.; Kim, J.H. Genetic diversity of Noroviruses detected in oysters in Jinhae Bay, Korea. Food Sci. Biotechnol. 2013, 22, 1–8. [Google Scholar] [CrossRef]
- Souza, D.S.M.; Ramos, A.P.D.; Nunes, F.F.; Moresco, V.; Taniguchi, S.; Leal, D.A.G.; Sasaki, S.T.; Bícego, M.C.; Montone, R.C.; Durigan, M. Evaluation of tropical water sources and molluscs in southern Brazil using microbiological, biochemical, and chemical parameters. Ecotoxicol. Environ. Saf. 2012, 76, 153–161. [Google Scholar] [CrossRef]
- El Moqri, N.; El Mellouli, F.; Hassou, N.; Benhafid, M.; Abouchoaib, N.; Etahiri, S. Norovirus detection at oualidia lagoon, a moroccan shellfish harvesting area, by reverse transcription PCR analysis. Food Environ. Virol. 2019, 11, 268–273. [Google Scholar] [CrossRef]
- Cooper, D.M.; McDonald, J.E.; Malham, S.K.; de Rougemont, A.; Jones, D.L. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Sci. Total Environ. 2018, 634, 1174–1183. [Google Scholar]
- Mannion, F.; Hillary, L.S.; Malham, S.K.; Walker, D.I. Emerging technologies for the rapid detection of enteric viruses in the aquatic environment. Curr. Opin. Environ. Sci. Health 2020, 16, 1–6. [Google Scholar]
- Polo, D.; Varela, M.F.; Romalde, J.L. Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. Int. J. Food Microbiol. 2015, 193, 43–50. [Google Scholar] [CrossRef]
- Tan, D.M.; Lyu, S.L.; Wei, L.I.U.; Zeng, X.Y.; Lan, L.A.N.; Cong, Q.U.; Zhuge, S.Y.; Zhong, Y.X.; Xie, Y.H.; Li, X.G. Utility of droplet digital PCR assay for quantitative detection of norovirus in shellfish, from production to consumption in Guangxi, China. Biomed. Environ. Sci. 2018, 31, 713–720. [Google Scholar] [PubMed]
- Sharp, J.H.; Clements, K.; Diggens, M.; McDonald, J.E.; Malham, S.K.; Jones, D.L. E. coli is a poor end-product criterion for assessing the general microbial risk posed from consuming norovirus contaminated shellfish. Front. Microbiol. 2021, 12, 608888. [Google Scholar] [CrossRef]
- Pouillot, R.; Smith, M.; Van Doren, J.M.; Catford, A.; Holtzman, J.; Calci, K.R.; Edwards, R.; Goblick, G.; Roberts, C.; Stobo, J. Risk assessment of norovirus illness from consumption of raw oysters in the United States and in Canada. Risk Anal. 2022, 42, 344–369. [Google Scholar] [CrossRef]
- Souza, D.S.M.; Dominot, A.F.Á.; Moresco, V.; Barardi, C.R.M. Presence of enteric viruses, bioaccumulation and stability in Anomalocardia brasiliana clams (Gmelin, 1791). Int. J. Food Microbiol. 2018, 266, 363–371. [Google Scholar] [CrossRef] [PubMed]
- NSSP (National Shellfish Sanitary Program). Guide for the Control of Molluscan Shellfish-2019 Revision, Food and Drug Administration. 2019. Available online: https://www.fda.gov/food/federalstate-food-programs/national-shellfish-sanitation-program-nssp (accessed on 10 September 2022).
- True, E.D. Using a Numerical Model to Track the Discharge of a Wastewater Treatment Plant in a Tidal Estuary. Water Air Soil Pollut. 2018, 229, 267. [Google Scholar] [CrossRef]
- Schaeffer, J.; Treguier, C.; Piquet, J.-C.; Gachelin, S.; Cochennec-Laureau, N.; Le Saux, J.-C.; Garry, P.; Le Guyader, F.S. Improving the efficacy of sewage treatment decreases norovirus contamination in oysters. Int. J. Food Microbiol. 2018, 286, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bowley, J.; Baker-Austin, C.; Porter, A.; Hartnell, R.; Lewis, C. Oceanic hitchhikers–assessing pathogen risks from marine microplastic. Trends Microbiol. 2021, 29, 107–116. [Google Scholar] [CrossRef]
- Yamada, Y.; Guillemette, R.; Baudoux, A.-C.; Patel, N.; Azam, F. Viral attachment to biotic and abiotic surfaces in seawater. Appl. Environ. Microbiol. 2020, 86, e01619–e01687. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Siddiqui, J.A.; Sadaf, M.; Liu, S.; Wang, J. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. Sci. Total Environ. 2022, 830, 154720. [Google Scholar] [CrossRef]
- Battistini, R.; Listorti, V.; Squadrone, S.; Pederiva, S.; Abete, M.C.; Mua, R.; Ciccotelli, V.; Suffredini, E.; Maurella, C.; Baioni, E. Occurrence and persistence of enteric viruses, arsenic and biotoxins in Pacific oysters farmed in an Italian production site. Mar. Pollut. Bull. 2021, 162, 111843. [Google Scholar] [CrossRef] [PubMed]
- Ukwo, S.; Ezeama, C.; Obot, O. Microbiological safety and toxic element contaminants in bivalve shellfish from intertidal mudflats of IKO estuary, Niger delta, Nigeria. South Asian J. Food Technol. Environ. 2019, 5, 846–854. [Google Scholar] [CrossRef]
- Park, K.; Mok, J.S.; Ryu, A.R.; Kwon, J.Y.; Ham, I.T.; Shim, K.B. Occurrence and virulence of Vibrio parahaemolyticus isolated from seawater and bivalve shellfish of the Gyeongnam coast, Korea, in 2004–2016. Mar. Pollut. Bull. 2018, 137, 382–387. [Google Scholar] [CrossRef]
- Theuerkauf, S.J.; Barrett, L.T.; Alleway, H.K.; Costa-Pierce, B.A.; St. Gelais, A.; Jones, R.C. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and next steps. Rev. Aquacul. 2022, 14, 54–72. [Google Scholar] [CrossRef]
- Guo, Z.; Robinson, D.; Hite, D. Economic impact of Mississippi and Alabama Gulf Coast tourism on the regional economy. Ocean Coast. Manag. 2017, 145, 52–61. [Google Scholar] [CrossRef]
- Kyzar, T.; Safak, I.; Cebrian, J.; Clark, M.W.; Dix, N.; Dietz, K.; Gittman, R.K.; Jaeger, J.; Radabaugh, K.R.; Roddenberry, A. Challenges and opportunities for sustaining coastal wetlands and oyster reefs in the southeastern United States. J. Environ. Manag. 2021, 296, 113178. [Google Scholar] [CrossRef]
- El Mahrad, B.; Abalansa, S.; Newton, A.; Icely, J.D.; Snoussi, M.; Kacimi, I. Social-environmental analysis for the management of coastal lagoons in North Africa. Front. Environ. Sci. 2020, 8, 37. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D. Human health and ocean pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef] [PubMed]
- Goya, A.B.; Tarnovius, S.; Hatfield, R.G.; Coates, L.; Lewis, A.M.; Turner, A.D. Paralytic shellfish toxins and associated toxin profiles in bivalve mollusc shellfish from Argentina. Harmful Algae 2020, 99, 101910. [Google Scholar] [CrossRef]
- Wu, H.Y.; Luan, Q.S.; Guo, M.M.; Gu, H.F.; Zhai, Y.X.; Tan, Z.J. Phycotoxins in scallops (Patinopecten yessoensis) in relation to source, composition and temporal variation of phytoplankton and cysts in North Yellow Sea, China. Mar. Pollut. Bull. 2018, 135, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.M.; Vasconcelos, P.; Pereira, F.; Moura, P.; Gaspar, M.B. Bivalve sanctuaries to enhance stocks along the Algarve coast of southern Portugal: A spatio-temporal approach. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 1271–1282. [Google Scholar] [CrossRef]
- Olalemi, A.; Baker-Austin, C.; Ebdon, J.; Taylor, H. Bioaccumulation and persistence of faecal bacterial and viral indicators in Mytilus edulis and Crassostrea gigas. Int. J. Hyg. Environ. Health. 2016, 219, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, F.; Pimentel, T.; Génio, L.; Calado, R. Spatio-temporal variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance for tracing geographic origin. Sci. Rep. 2017, 7, 3475. [Google Scholar] [CrossRef]
- De Silva, L.; Wickramanayake, M.; Heo, G.J. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett. Appl. Microbiol. 2021, 73, 176–186. [Google Scholar] [CrossRef]
- Crovato, S.; Mascarello, G.; Marcolin, S.; Pinto, A.; Ravarotto, L. From purchase to consumption of bivalve molluscs: A qualitative study on consumers’ practices and risk perceptions. Food Cont. 2019, 96, 410–420. [Google Scholar] [CrossRef]
- Mok, J.S.; Lee, T.S.; Kim, P.H.; Lee, H.J.; Ha, K.S.; Shim, K.B.; Lee, K.J.; Jung, Y.J.; Kim, J.H. Bacteriological quality evaluation of seawater and oysters from the Hansan-Geojeman area in Korea, 2011–2013: Impact of inland pollution sources. Springerplus 2016, 5, 1412. [Google Scholar] [CrossRef] [Green Version]
- Chinnadurai, S.; Campos, C.J.A.; Geethalakshmi, V.; Sharma, J.; Kripa, V.; Mohamed, K.S. Microbiological quality of shellfish harvesting areas in the Ashtamudi and Vembanad estuaries (India): Environmental influences and compliance with international standards. Mar. Pollut. Bull. 2020, 156, 111255. [Google Scholar] [CrossRef]
- Maalouf, H.; Zakhour, M.; Le Pendu, J.; Le Saux, J.-C.; Atmar, R.L.; Le Guyader, F.S. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Appl. Environ. Microbiol. 2010, 76, 5621–5630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincé, A.; Balière, C.; Hervio-Heath, D.; Cozien, J.; Lozach, S.; Parnaudeau, S.; Le Guyader, F.S.; Le Hello, S.; Giard, J.-C.; Sauvageot, N. Occurrence of bacterial pathogens and human noroviruses in shellfish-harvesting areas and their catchments in France. Front. Microbiol. 2018, 9, 2443. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, S.K.; Guerra, C.R.; Malta, F.C.; Coutinho, R.; Miagostovich, M.P.; Fumian, T.M. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. Mar. Pollut. Bull. 2020, 157, 111315. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.T.G.; Ebdon, J.; Dancer, D.; Baker-Austin, C.; Taylor, H. A Longitudinal Study of Bacteriophages as Indicators of Norovirus Contamination of Mussels (Mytilus edulis) and Their Overlying Waters. Pollutants 2022, 2, 66–81. [Google Scholar] [CrossRef]
- Hodgson, K.R.; Torok, V.A.; Turnbull, A.R. Bacteriophages as enteric viral indicators in bivalve mollusc management. Food Microbiol. 2017, 65, 284–293. [Google Scholar] [CrossRef]
- 15216-2017/+A1:2021, I.; Microbiology of food chain- horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR-Part1: Method for quantification -Amendment 1. ISO (International Standardization Organisation): Geneva, Switzerland, 2017.
- Kitajima, M.; Gerba, C.P. Aichi virus 1: Environmental occurrence and behavior. Pathogens 2015, 4, 256–268. [Google Scholar] [CrossRef]
- European Food Safety Authority, A. Analysis of the European baseline survey of norovirus in oysters. EFSA J. 2019, 17, e05762. [Google Scholar] [CrossRef] [Green Version]
- Garbossa, L.H.P.; Souza, R.V.; Campos, C.J.A.; Vanz, A.; Vianna, L.F.N.; Rupp, G.S. Thermotolerant coliform loadings to coastal areas of Santa Catarina (Brazil) evidence the effect of growing urbanisation and insufficient provision of sewerage infrastructure. Environ. Monitor. Assess. 2017, 189, 27. [Google Scholar] [CrossRef]
- Younger, A.; Kershaw, S.; Campos, C.J.A. Performance of Storm Overflows Impacting on Shellfish Waters in England. Land 2022, 11, 1576. [Google Scholar] [CrossRef]
- Webber, J.L.; Tyler, C.R.; Carless, D.; Jackson, B.; Tingley, D.; Stewart-Sinclair, P.; Artioli, Y.; Torres, R.; Galli, G.; Miller, P.I. Impacts of land use on water quality and the viability of bivalve shellfish mariculture in the UK: A case study and review for SW England. Environ. Sci. Pol. 2021, 126, 122–131. [Google Scholar] [CrossRef]
- Campos, C.J.A.; Alves, M.T.; Walker, D.I. Long term reductions of faecal indicator organisms in Chichester Harbour (England) following sewerage infrastructure improvements in the catchment. Sci. Total Environ. 2020, 733, 139061. [Google Scholar] [CrossRef] [PubMed]
Enteric Virus | Country and Year | Bivalve Mollusc | References |
---|---|---|---|
Norovirus (GI and GII) | France, 2012 | Oyster | [50] |
Canada, 2016 | Oyster | [16] | |
US, 2009–2014 | Oyster | [15] | |
South Korea, 2013 | Oyster | [51] | |
France, 2019 | Oyster | [52] | |
Hepatitis A | Hawaii, 2016 | Scallops | [53] |
China, 1988 | Clams | [18] | |
China, 2020 | Oyster | [18] | |
Italy, 1997–2004 | Raw shellfish | [54] | |
Australia | Oysters | [17] | |
Aichivirus | Japan, 1989 | Oyster | [13] |
Sapovirus | Japan, 1977 | Oyster | [46] |
Astrovirus, adenovirus, Rotavirus | The rapid increase in cases but not frequently implicated in outbreaks occurrence [9,48] |
Study Area | Aim of the Study | Findings | Recommendations | References |
---|---|---|---|---|
Poole Harbour, Britain | (1) To determine the impact of geographical and temporal changes on E. coli and norovirus in mussels. (2) Influence of environmental factors. | (1) High concentrations of NoV on sampling sites close to the sewage discharge point. (2) Higher concentrations of E. coli in mussels than in seawater. | Geographical and temporal variations must be considered in harvest area monitoring programmes and most importantly incorporated into food safety regulations and harvest area management plans. | [11] |
Syracuse, Italy | Assessment of enteric viruses including HAV and NoV in bivalve molluscs. | Detection of enteric viruses indicates they are widely distributed in aquatic environments. | (1) Development of strategies and methodologies to assess public health risks. (2) Systemic controls for viral pathogens to protect consumers. (3) An integrated surveillance system reporting food safety, environmental exposure, and clinical cases. | [8] |
Gulf of Pozzuoli, Italy | Determine existence of a relationship between viral and chemical contamination. | Oysters demonstrated a possible link between chemical pollutants and the bioaccumulation of multiple enteric viruses. | Efficient monitoring of harvest areas to determine a correlation between environmental pollutants and foodborne viruses. | [10] |
Sardinian shellfish farms, Italy | (1) Detection of E. coli, HAV and NoV in shellfish samples. (2) Assessment of possible relationships between pathogens and seasonality. | Norovirus was prevalent in all areas during the winter season. | (1) Stringent shellfish monitoring programmes. (2) Inclusion of environmental parameters. (3) Improved monitoring plans could lead to better management of shellfish harvest areas. | [60] |
Baltic Sea, Poland | Evaluate NoV and HAV occurrence in wild Baltic mussels and possible inclusion as indicator species for viruses. | Underreporting of viruses’ occurrence in wild shellfish could limit insight into the role they play in environmental viral transmission. | The development of viral indicators such as E. coli is not effective in the prediction of viral pollution. | [61] |
Australia, New South Wales, Tasmania and South Australia | Assess the occurrence of NoV and E. coli in Pacific oysters and Sydney rock oysters. | The human population around the shellfish growing areas is lower in Australia compared to other countries. | An increase in viral contaminations calls for control measures specific to virus pollution in shellfish-growing areas. | [7] |
Commercial harvesting areas- coast of England and Wales | Determine the possible predictor variables for NoV in oysters. | Heavy rainfall was implicated in high concentrations of E. coli levels. | Viruses-specific control measures are required for monitoring harvesting areas. Improvement of sewage infrastructure and improvement of risk management measures. | [62] |
Campania region, Italy | To establish a relationship between environmental parameters and viral contamination. | The presence of chemical contaminants influenced viruses’ bioavailability. | Integration of microbiological and chemical monitoring programmes as an effective warning system. | [63] |
Gulf of Naples, Italy | Evaluate the effects of the different enteric viruses within bivalve molluscs. | Confirmed circulation of multiple enteric viruses in bivalves. | Consumer awareness campaigns on the importance of cooking seafood thoroughly. | [63] |
Montenegro Coast | To determine the distribution rate of NoV in mussels along the coast. | Seasonality and the human population contribute to the prevalence and spread of viruses. | (1) Improvement of shellfish monitoring programmes. (2) Development of virus-specific criteria. | [64] |
Mangrove Estuary, Brazil | Quantify enteric pathogenic viruses. | (1) High concentrations of HAV, NoV and AdV were detected during winter months in water, mussels, and oyster samples. (2) Estuary should be classified as a prohibited zone for bivalve harvesting for human consumption. | Improvement in shellfish monitoring programmes. | [49] |
Atlantic Coast Lagoon, France | NoV contamination and gastroenteritis outbreaks. | Seasonality and high prevalence of NoV in oysters. | (1) Prevention of contamination. (2) Development and implementation of an outbreak alert system. | [65] |
Production in Sicily, Italy | To develop a routine monitoring plan for enteric viruses. | Prevalence of enteric virus. | Development of a monitoring system for viruses, using data from epidemiological studies and existing molecular methods. | [66] |
Southern Coast of Buenos Aires Province, Argentina | To determine the presence of NoV and RvA in oysters. | Detected NoV in RvA in samples and resistance to heat treatment. | Understanding viruses’ circulation to improve existing surveillance plans. | [67] |
Galicia, Spain | Compile a database on the prevalence of enteric viruses in shellfish. | (1) Harvest areas affected by close proximity to pollutants discharge points and dilution factors. (2) Role of bivalves as a vector of zoonotic diseases. | A better understanding of emerging enteric viruses’ behaviour and pathogenicity. | [42] |
Jinhae Bay, Korea | Investigate the contamination status of the oyster growing area by NoV and the circulation of NoV genotypes. | NoV GII strains are the most prevalent in oysters and elimination can be difficult. | (1) No commercial harvesting in polluted areas. (2) Prevent faecal contamination in production areas. | [68] |
Florianόpolis, on the coast of Santa Catarina, Brazil | To perform a thorough diagnosis of the shellfish growing areas. | (1) Contamination by various pathogens due to sewage discharge. (2) Complexities of microbiological and chemical compound contaminants. | Control measures are necessary to ensure the safety of produce. | [69] |
Lagunar complex Cananẻia, Brazil | Analysed the presence of Astrovirus and NoV in mussels and oysters. | Mussels and oysters tested positive for the studied viruses. | Mapping out the pollution sources, using the findings to develop risk assessment and control measures of pathogen contamination. | [48] |
Oualidia Lagoon, Morocco | Evaluate NoV frequency in bivalve shellfish harvested at Oualidia lagoon. | Risk of contamination in oysters. | Importance of implementing a national survey plan and sanitary control for the viral risk, including NoV in bivalve molluscs. | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuping, L.S.; Human, I.S.; Lues, J.F.R.; Paulse, A.N. The Prevalence of Viruses Related to the Production of Mussels and Oysters in Saldanha Bay: A Systematic Review. Aquac. J. 2023, 3, 90-106. https://doi.org/10.3390/aquacj3020009
Shuping LS, Human IS, Lues JFR, Paulse AN. The Prevalence of Viruses Related to the Production of Mussels and Oysters in Saldanha Bay: A Systematic Review. Aquaculture Journal. 2023; 3(2):90-106. https://doi.org/10.3390/aquacj3020009
Chicago/Turabian StyleShuping, Likentso Sylvia, Izanne Susan Human, Jan Frederik Rykers Lues, and Arnelia Natalie Paulse. 2023. "The Prevalence of Viruses Related to the Production of Mussels and Oysters in Saldanha Bay: A Systematic Review" Aquaculture Journal 3, no. 2: 90-106. https://doi.org/10.3390/aquacj3020009
APA StyleShuping, L. S., Human, I. S., Lues, J. F. R., & Paulse, A. N. (2023). The Prevalence of Viruses Related to the Production of Mussels and Oysters in Saldanha Bay: A Systematic Review. Aquaculture Journal, 3(2), 90-106. https://doi.org/10.3390/aquacj3020009