Essential Oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family Fruits
Abstract
:1. Introduction
2. Postharvest Pathogens
3. EOs’ Chemical Composition
Scientific Name | Common Name | Abbreviation | Organs | Principal Compounds |
---|---|---|---|---|
Acorus calamus L. | Calamus oil | CaEO | Flowers and leaves | α-asarone, (E)-methylisoeugenol, methyleugenol and β-asarone |
Allium sativum L. | Garlic oil | GEO | Bulb | Allyl methyl trisulfide, diallyl disulfide, diallyl trisulfide, and allyl methyl disulfide |
Aloysia citriodora Kunth. | Lemon Verbena oil | LVEO | Leaves | Geranial, neral, spathulenol, and limonene |
Alpinia officinarum Hance | Galangal oil | GalEO | Rhizomes | 1,8-cineole, α-fenchyl acetate, β-myrcene, and β-ocimene |
Artemisia argyi H.Lév. & Vaniot | Artemisia oil | ArEO | Leaves | Eucalyptol, β-pinene, camphor, and artemisia ketone |
Cinnamomum zeylanicum L. | Cinnamon oil | CEO | Barks | Cinnamaldehyde, benzaldehyde, and trans-cinnamyl acetate |
Citrus aurantiifolia L. | Lime oil | LiEO | Fruits | Limonene, α-terpineol, terpinen-4-ol, and 1,8-cineole |
Citrus limon L. | Lemon oil | LeEO | Fruits | Limonene, citrale, citronellal, geranyl acetate |
Cortex dictamni Turcz. | Cortex oil | CoEO | Leaves | Germacrene D, terpinolene, (Z)-β-ocimene, and β-caryophyllene (7.74%) |
Cymbopogon citratus L. Cymbopogon winterianus Jowitt | Lemongrass oil | LgEO | Leaves | Citral, isoneral, isogeranial, and geraniol |
Cymbopogon martini (Roxb.) Wats. | Palmarosa oil | PalEO | Flowers and leaves | Geraniol, geranylacetate, farnesol, and nerolidol |
Eucalyptus globulus Labill. Eucalyptus camaldulensis Dehnh. Eucalyptus staigeriana F.Muell. ex Bailey | Eucalyptus oil | EuEO | Leaves | Eucalyptol, p-cymene, α-pinene, and β-limonene |
Foeniculum vulgare Mill. | Fennel oil | FEO | Seeds and fruits | Trans-anethol, fenchone, estragole, and limonene |
Laurus nobilis L. | Laurel oil | LaEO | Leaves | 1,8-cineole, sabinene, α-pinene, and linalool |
Lavandula officinalis L. | Lavander oil | LEO | Flowers and leaves | Linalyl acetate, α-terpineol, and borneol |
Lippia sidoides Cham. | Pepper-rosmarin oil | PREO | Leaves | 1,8-cineole, sabinene, α-terpineol, and α-pinene |
Malaleuca ericifolia Sm. | Rosalina oil | RosEO | Leaves | 1,8-cineole, α-pinene, γ-terpinene, and terpinen-4-ol |
Mentha piperita L. | Peppermint oil | PEO | Leaves | Menthol, menthone, menthofuran, and cis-carane |
Mucuna pruriens (L.) DC. | Mucuna pruriens oil | MPEO | Leaves | (E)-2-hexenal, linalool, 1-hexanol, and trans-dehydroxylinalool oxide |
Ocimum americanum L. | Ocimum americanum | OAEO | Leaves | 1,8-cineole, (E)-γ-bisabolene, β-bisabolene, and eugenol |
Origanum majorana L. | Majorana oil | MEO | Flowers and leaves | 4-terpineol, cis-thujan-4-ol, δ-terpinene, and α-terpinene |
Origanum vulgare L. | Oregano oil | OEO | Flowers and leaves | Carvacrol, p-cymene, and linalool |
Pelargonium graveolens | Geranium oil | GaEO | Flowers and leaves | Citronellol, geraniol, citronellyl formate, and linalool |
Pimenta pseudocaryophyllus (Gomes) L.R. Landrum | Pimenta oil | PPEO | Leaves | Methyl eugenol, neral, geranial, and (E)–methyl isoeugenol |
Rosmarinus officinalis L. | Rosemary oil | REO | Flowers and leaves | p-cymene, camphor, limonene, and myrcene |
Salvia officinalis L. | Sage oil | SaEO | Flowers and leaves | α-thujone, β-thujone, camphor, and camphene |
Satureja hortensis L. | Summer savory oil | SSEO | Flowers and leaves | Carvacrol, o-cymene, linalool, and caryophyllene oxide |
Sesamum indicum L. | Sesamum oil | SeEO | Leaves and seeds | Linoleic acid, oleic acid, and palmitic and stearic acid |
Syringa vulgaris L. | Lilac oil | LLEO | Flowers and leaves | Ocimene, benzyl methyl ether, 1,4-dimethoxybenzene, and indole |
Syzygium aromaticum ((L.) Merr. & L.M.Perry, 1939) Eugenia caryophyllata | Clove oil | ClEO | Leaves and seeds | Eugenol, β-caryophyllene, α-humulene, and eugenyl acetate |
Thymus vulgaris L. | Thyme oil | TEO | Flowers and leaves | Thymol, cis-3-hexenyl acetate, p-cymene, and carvacrol |
Verbena officinalis L. | Vervain oil | VEO | Flowers and leaves | Limonene, 1,8-cineole, pathuleno1, and caryophyllene oxide |
Zanthoxylum bungeanum Maxim | Zanthoxylum bungeanum oil | ZBEO | Flowers and leaves | Terpineol-4-ol, (-)-β-pinene, γ-terpinene, and terpinyl acetate |
Zataria multiflora Boiss | Zataria oil | ZMEO | Flowers and leaves | Thymol, carvacrol, p-cymene, and γ-terpinene |
Mentha spicata L. | Mint oil | MiEO | Flowers and leaves | Linalyl acetate, linalool, carvone, and limonene |
Litsea cubeba Pers. | Litsea oil | LitEO | Flowers and leaves | Geranial, neral, limonene, and β-thujene |
4. Essential Oils’ Effects on Human Health and the Environment
5. Use of Essential Oils to Control Postharvest Microbial Spoilage
5.1. Pome Fruits
5.2. Stone Fruits
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahaya, S.M.; Mardiyya, A.Y. Review of Post-Harvest Losses of Fruits and Vegetables. Biomed. J. Sci. Tech. Res. 2019, 13, 10192–10200. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, D.; Ge, X.; Luo, Y.; Su, J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J. Food Biochem. 2022, 46, e14513. [Google Scholar] [CrossRef] [PubMed]
- Duduk, N.; Markovic, T.; Vasic, M.; Duduk, B.; Vico, I.; Obradovic, A. Antifungal Activity of Three Essential Oils against Colletotrichum acutatum, the Causal Agent of Strawberry Anthracnose. J. Essent. Oil Bear. Plants 2015, 18, 529–537. [Google Scholar] [CrossRef]
- Khalid, M.; Saeed-ur-Rahman; Bilal, M.; Huang, D.F. Role of Flavonoids in Plant Interactions with the Environment and against Human Pathogens—A Review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H. Effect of Pre-Harvest and Post-Harvest Conditions and Treatments on Plum Fruit Quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Landi, L.; de Miccolis Angelini, R.M.; Pollastro, S.; Abate, D.; Faretra, F.; Romanazzi, G. Genome Sequence of the Brown Rot Fungal Pathogen Monilinia fructigena. BMC Res. Notes 2018, 11, 758. [Google Scholar] [CrossRef] [Green Version]
- Rungjindamai, N.; Jeffries, P.; Xu, X.M. Epidemiology and Management of Brown Rot on Stone Fruit Caused by Monilinia laxa. Eur. J. Plant Pathol. 2014, 140, 1–17. [Google Scholar] [CrossRef]
- Pusey, P.L. Postharvest Biological Control of Stone Fruit Brown Rot by Bacillus subtilis. Plant Dis. 1984, 68, 753–756. [Google Scholar] [CrossRef]
- Santoro, K.; Maghenzani, M.; Chiabrando, V.; Bosio, P.; Gullino, M.L.; Spadaro, D.; Giacalone, G. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold. Foods 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Fathi, Z.; Ghosta, Y.; Abdollahi, A.; Meshkatalsadat, M.H.; Marandi, R.J. Evaluation of Plant Essential Oils for Control of Postharvest Brown and Gray Mold Rots on Apricot. J. Food Saf. 2012, 32, 94–101. [Google Scholar] [CrossRef]
- McLaughlin, R.J. Effect of Inoculum Concentration and Salt Solutions on Biological Control of Postharvest Diseases of Apple with Candida Sp. Phytopathology 1990, 80, 456–461. [Google Scholar] [CrossRef]
- Arceo-Martínez, M.T.; Jiménez-Mejía, R.; Salgado-Garciglia, R.; Santoyo, G.; López-Meza, J.E.; Loeza-Lara, P.D. In Vitro and in Vivo Anti-Fungal Effect of Chitosan on Post-Harvest Strawberry Pathogens. Agrociencia 2019, 53, 1297–1311. [Google Scholar]
- Ye, W.Q.; Sun, Y.F.; Tang, Y.J.; Zhou, W.W. Biocontrol Potential of a Broad-Spectrum Antifungal Strain Bacillus amyloliquefaciens B4 for Postharvest Loquat Fruit Storage. Postharvest Biol. Technol. 2021, 174, 111439. [Google Scholar] [CrossRef]
- Francesco, A.D.; Collina, M.; Spadoni, A.; Mari, M.; Baraldi, E. Resistance induction by hot water treatments to control apple postharvest diseases. IOBC WPRS Bull. 2018, 135, 81–83. [Google Scholar]
- Stosic, S.; Ristic, D.; Savkovic, Z.; Grbic, M.L.; Vukojevic, J.; Zivkovic, S. Penicillium and Talaromyces Species as Postharvest Pathogens of Pear Fruit (Pyrus communis) in Serbia. Plant Dis. 2021, 105, 3510–3521. [Google Scholar] [CrossRef]
- Vuckovic, N.; Vico, I.; Duduk, B.; Duduk, N. Diversity of Botryosphaeriaceae and Diaporthe Species Associated with Postharvest Apple Fruit Decay in Serbia. Phytopathology 2022, 112, 929–943. [Google Scholar] [CrossRef]
- Yemiş, G.P.; Candoğan, K. Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food Sci. Biotechnol. 2017, 26, 1113–1121. [Google Scholar] [CrossRef]
- Tonini, G.; Capriotti, M. Postharvest damage to stone fruits and its prevention. Inf. Agrar. Suppl. 1996, 52, 32–45. [Google Scholar]
- Singh, A.; Dwivedy, A.K.; Singh, V.K.; Upadhyay, N.; Chaudhari, A.K.; Das, S.; Dubey, N.K. Essential Oils Based For-mulations as Safe Preservatives for Stored Plant Masticatories against Fungal and Mycotoxin Contamination: A Review. Biocatal. Agric. Biotechnol. 2019, 17, 313–317. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- FDA. CFR—Code of Federal Regulations Title 21—Food and Drugs; Food and Drug Administration: White Oak, MD, USA, 2020. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/Cxrch.cfm?fr=182.20 (accessed on 30 December 2022).
- De-Montijo-Prieto, S.; Razola-Díaz, M.D.C.; Gómez-Caravaca, A.M.; Guerra-Hernandez, E.J.; Jiménez-Valera, M.; Garcia-Villanova, B.; Ruiz-Bravo, A.; Verardo, V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. Biology 2021, 10, 1091. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Banani, H.; Olivieri, L.; Santoro, K.; Garibaldi, A.; Gullino, M.L.; Spadaro, D. Thyme and Savory Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through Priming of Defense Responses in Apple. Foods 2018, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Reyes, J.G.; Spadaro, D.; Gullinoa, M.L.; Garibaldia, A. Efficacy of Plant Essential Oils on Postharvest Control of Rot Caused by Fungi on Four Cultivars of Apples in Vivo. Flavour Fragr. J. 2010, 25, 171–177. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Ahmed, Z.F.R.; Tzortzakis, N. Application of Rosemary and Eucalyptus Essential Oils and Their Main Component on the Preservation of Apple and Pear Fruits. Horticulturae 2021, 7, 479. [Google Scholar] [CrossRef]
- El Ouadi, Y.; Manssouri, M.; Bouyanzer, A.; Majidi, L.; Bendaif, H.; Elmsellem, H.; Shariati, M.A.; Melhaoui, A.; Hammouti, B. Essential Oil Composition and Antifungal Activity of Melissa officinalis Originating from North-Est Morocco, against Postharvest Phytopathogenic Fungi in Apples. Microb. Pathog. 2017, 107, 321–326. [Google Scholar] [CrossRef]
- Vieira, A.M.F.D.; Steffens, C.A.; Argenta, L.C.; Amarante, C.V.T.D.; Oster, A.H.; Casa, R.T.; Amarante, A.G.M.; Espíndola, B.P. Essential oils for the postharvest control of blue mold and quality of ‘Fuji’ apples. Pesqui. Agropecu. Bras. 2018, 53, 547–556. [Google Scholar] [CrossRef]
- Mbili, N.C.; Opara, U.L.; Lennox, C.L.; Vries, F.A. Citrus and Lemongrass Essential Oils Inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ Apples. J. Plant Dis. Prot. 2017, 124, 499–511. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Dambrauskienė, E.; Viškelis, P.; Valiuškaitė, A. Biocontrol of Strawberry Pathogen Botrytis cinerea Using Plant Extracts and Essential Oils. Zemdirbyste 2020, 107, 147–152. [Google Scholar] [CrossRef]
- Sernaite, L.; Rasiukeviciute, N.; Valiuškaite, A. Application of Plant Extracts to Control Postharvest Gray Mold and Susceptibility of Apple Fruits to B. cinerea from Different Plant Hosts. Foods 2020, 9, 1430. [Google Scholar] [CrossRef]
- Schiavon, G.; Garello, M.; Prencipe, S.; Meloni, G.R.; Buonsenso, F.; Spadaro, D. Essential Oils Reduce Grey Mould Rot of Apples and Modify the Fruit Microbiome during Postharvest Storage. J. Fungi 2023, 9, 22. [Google Scholar] [CrossRef]
- Oli, N.; Singh, U.K.; Jha, S.K. Antifungal Activity of Plant’s Essential Oils against Post Harvest Fungal Disease of Apple Fruit. J. For. 2019, 16, 86–100. [Google Scholar] [CrossRef]
- Serag, M.S.; Baka, Z.A.; Farg, A.I.; Mohesien, M.T. Bio-Control And Ultrastructure Of Post-Harvest Pathogenic Fungi Of Apple Fruits: Post-harvest pathogenic fungi of fruits. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e4189. [Google Scholar] [CrossRef]
- European Commission. Health & Consumer Protection Directorate—General 2014 Guidance Document on Botanical Active Substances Used in Plant Protection Products Sanco/11470/2012–Rev. 8; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Mari, M.; Guizzardi, M. The Postharvest Phase: Emerging Technologies for the Control of Fungal Diseases. Phytoparasitica 1998, 26, 59–66. [Google Scholar] [CrossRef]
- Akthar, M.S.; Degaga, B.; Azam, T. Antimicrobial Activity of Essential Oils Extracted from Medicinal Plants against the Pathogenic Microorganisms: A Review. Issues Biol. Sci. Pharm. Res. 2014, 2, 1588. [Google Scholar]
- Lee, S.H.; Do, H.S.; Min, K.J. Effects of Essential Oil from Hinoki Cypress, Chamaecyparis obtusa, on Physiology and Behavior of Flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef] [PubMed]
- Bouchra, C.; Achouri, M.; Hassani, L.M.I.; Hmamouchi, M. Chemical Composition and Antifungal Activity of Essential Oils of Seven Moroccan Labiatae against Botrytis cinerea Pers. Fr. J. Ethnopharmacol. 2003, 89, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The Effects of Essential Oils Carvacrol and Thymol on Growth of Penicillium digitatum and P. italicum Involved in Lemon Decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef]
- Tao, N.; Jia, L.; Zhou, H. Anti-Fungal Activity of Citrus Reticulata Blanco Essential Oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xu, Z.; Li, X.; Wang, D.; Ren, X.; Kong, Q. Underlying mechanism of menthol on controlling postharvest citrus sour rot caused by Geotrichum citriaurantii. Post Biol. Tech. 2023, 196, 112–160. [Google Scholar] [CrossRef]
- Kalleli, F.; Abid, G.; Salem, I.B.; Boughalleb-M’Hamdi, N.; M’Hamdi, M. Essential Oil from Fennel Seeds (Foeniculum vulgare) Reduces Fusarium Wilt of Tomato (Solanum lycopersicon). Phytopathol. Mediterr. 2020, 59, 63–76. [Google Scholar]
- Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae Pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. Plant Pathol. J. 2016, 32, 363. [Google Scholar]
- Kumar, A.; Dubey, N.K.; Srivastava, S. Antifungal Evaluation of Ocimum sanctum Essential Oil against Fungal Deterioration of Raw Materials of Rauvolfia serpentina during Storage. Ind. Crops Prod. 2013, 45, 30–35. [Google Scholar] [CrossRef]
- Pineda, M.R.; Vizcaíno, P.S.; García, P.C.M.; Gil, G.J.H.; Durango, R.D.L. Chemical Composition and Antifungal Activity of Piper auritum Kunth and Piper holtonii, C. DC. against Phytopathogenic Fungi. Chil. J. Agric. Res. 2012, 72, 507. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.Z.; Yu-Xuan, W.; Tao, L.; di Zhang, Y.; Wang, S.R.; Zhang, G.C.; Zhang, J. Inhibitory Effects and Mechanisms of Vanillin on Gray Mold and Black Rot of Cherry Tomatoes. Pestic Biochem. Physiol. 2021, 175, 104859. [Google Scholar] [CrossRef]
- Mookherjee, B.D.; Wilson, R.A. Oils, Essential. In Kirk Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Paster, N.; Bullerman, L.B. Mould Spoilage and Mycotoxin Formation in Grains as Controlled by Physical Means. Int. J. Food Microbiol. 1988, 7, 257–265. [Google Scholar] [CrossRef]
- Paranagama, P.A.; Abeysekera, K.H.T.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and Anti-Aflatoxigenic Effects of the Essential Oil of Cymbopogon citratus (DC.) Stapf. (Lemongrass) against Aspergillus flavus Link. Isolated from Stored Rice. Lett. Appl. Microbiol. 2003, 37, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Yingngam, B.; Brantner, A.; Treichler, M.; Brugger, N.; Navabhatra, A.; Nakonrat, P. Optimization of the Eco-Friendly Solvent-Free Microwave Extraction of Limnophila aromatica Essential Oil. Ind. Crops Prod. 2021, 165, 113443. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Carnaroglio, D.; Grillo, G.; Cravotto, G.; Tamburino, A.; Ilharco, L.M.; Pagliaro, M. High-Quality Essential Oils Extracted by an Eco-Friendly Process from Different Citrus Fruits and Fruit Regions. ACS Sustain. Chem. Eng. 2017, 5, 5578–5587. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Koubaa, M.; Barba, F.J.; Abedi, E.; Niakousari, M.; Tavakoli, J. Extraction of Essential Oil from Aloysia citriodora Palau Leaves Using Continuous and Pulsed Ultrasound: Kinetics, Antioxidant Activity and Antimicrobial Properties. Process Biochem. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Panda, S.; Sahoo, S.; Tripathy, K.; Singh, Y.D.; Sarma, M.K.; Babu, P.J.; Singh, M.C. Essential Oils and Their Pharmacotherapeutics Applications in Human Diseases. Adv. Tradit. Med. 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Ezeorba, T.P.C.; Chukwudozie, K.I.; Ezema, C.A.; Anaduaka, E.G.; Nweze, E.J.; Okeke, E.S. Potentials for Health and Therapeutic Benefits of Garlic Essential Oils: Recent Findings and Future Prospects. Pharmacol. Res. Mod. Chin. Med. 2022, 3, 100075. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Antiproliferative Effects of Essential Oils and Their Major Constituents in Human Renal Adenocarcinoma and Amelanotic Melanoma Cells. Cell Prolif. 2008, 41, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Koul, O.; Walia, S.; Dhaliawal, G.S. Essential Oils as Green Pesticides: Potential and Constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- De Sousa, D.P. Analgesic-like Activity of Essential Oils Constituents. Molecules 2011, 16, 2233–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, Antimicrobial Activity and in Vitro Cytotoxicity of Essential Oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010, 48, 3274–3280. [Google Scholar] [CrossRef]
- Geng, S.; Cui, Z.; Huang, X.; Chen, Y.; Xu, D.; Xiong, P. Variations in Essential Oil Yield and Composition during Cinnamomum cassia Bark Growth. Ind. Crops Prod. 2011, 33, 248–252. [Google Scholar] [CrossRef]
- Carmo, E.S.; Lima, E.D.O.; de Souza, E.L. The Potential of Origanum vulgare L. (Lamiaceae) Essential Oil in Inhibiting the Growth of Some Food-Related Aspergillus Species. Braz. J. Microbiol. 2008, 39, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora Essential Oil Preparation and Characterization with Enhanced Antifungal Activity for Controlling Botrytis cinerea, the Causal Agent of Gray Mould Disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; de Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande-Tovar, C.D.; Chaves-López, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.J.E. Effect of Oregano Essential Oil on Microbiological and Physico-Chemical Attributes of Minced Meat Stored in Air and Modified Atmospheres. J. Appl. Microbiol. 2001, 91, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Moumni, M. Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr. Opin. Biotechnol. 2022, 78, 102834. [Google Scholar] [CrossRef] [PubMed]
- El Khetabi, A.; Ezrari, S.; el Ghadraoui, L.; Tahiri, A.; Haddou, L.A.; Belabess, Z.; Merah, O.; Lahlali, R. In Vitro and in Vivo Antifungal Activities of Nine Commercial Essential Oils against Brown Rot in Apples. Horticulturae 2021, 7, 545. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P. Recent Advances and Challenges in Trichome Research and Essential Oil Biosynthesis in Mentha arvensis L. Ind. Crops Prod. 2016, 82, 141–148. [Google Scholar] [CrossRef]
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. In Epidemiology of Mycotoxin Producing Fungi; Under the Aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU Project (QLK 1-CT-1998–01380); Springer: Berlin/Heidelberg, Germany, 2003; pp. 645–667. [Google Scholar]
- Varma, S.K.; Verma, R.A.B. Aflatoxin B1 Production in Orange (Citrus reticulata) Juice by Isolates of Aspergillus flavus Link. Mycopathologia 1987, 97, 101–104. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Nestora, S.; Evageliou, V.; Skandamis, P.N. Sodium Alginate–Cinnamon Essential Oil Coated Apples and Pears: Variability of Aspergillus carbonarius Growth and Ochratoxin a Production. Food Res. Int. 2019, 119, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Sapper, M.; Palou, L.; Pérez-Gago, M.B.; Chiralt, A. Antifungal Starch-Gellan Edible Coatings with Thyme Essential Oil for the Postharvest Preservation of Apple and Persimmon. Coatings 2019, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Gholamnezhad, J. Effect of Plant Extracts on Activity of Some Defense Enzymes of Apple Fruit in Interaction with Botrytis cinerea. J. Integr. Agric. 2019, 18, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Sadat Razavi, M.; Golmohammadi, A.; Nematollahzadeh, A.; Ghanbari, A.; Davari, M.; Carullo, D.; Farris, S. Production of Innovative Essential Oil-Based Emulsion Coatings for Fungal Growth Control on Postharvest Fruits. Foods 2022, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Elouadi, Y.; Bendaif, H.; Assaggaf, H.; Abdallah, E.M.; Mekkaoui, M. Efficacy of Pelargonium graveolens essential oils against some postharvest fungal diseases of apple. Adv. Life Sci. 2022, 9, 195–201. [Google Scholar]
- Long, H.; Bi, Y.; Pu, L.; Xu, W.; Xue, H.; Fu, G.; Prusky, D. Preparation of chitosan/fennel seed essential oil/starch sodium octenyl succinate composite films for apple fruit preservation. LWT 2022, 167, 113826. [Google Scholar] [CrossRef]
- Antonioli, G.; Fontanella, G.; Echeverrigaray, S.; Delamare, A.P.L.; Pauletti, G.F.; Barcellos, T. Poly(Lactic Acid) Nanocapsules Containing Lemongrass Essential Oil for Postharvest Decay Control: In Vitro and in Vivo Evaluation against Phytopathogenic Fungi. Food Chem. 2020, 326, 126997. [Google Scholar] [CrossRef]
- Zhang, W.; Shu, C.; Chen, Q.; Cao, J.; Jiang, W. The Multi-Layer Film System Improved the Release and Retention Properties of Cinnamon Essential Oil and Its Application as Coating in Inhibition to Penicillium expansion of Apple Fruit. Food Chem. 2019, 299, 125109. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, X.; Ye, B.; Shi, L.; Bai, X.; Lai, T. Effects of Essential Oil Decanal on Growth and Transcriptome of the Postharvest Fungal Pathogen Penicillium expansum. Postharvest Biol. Technol. 2018, 145, 203–212. [Google Scholar] [CrossRef]
- Nikkhah, M.; Hashemi, M.; Najafi, M.B.H.; Farhoosh, R. Synergistic Effects of Some Essential Oils against Fungal Spoilage on Pear Fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef]
- Serrano, M.; Martínez-Romero, D.; Guillén, F.; Valverde, J.M.; Zapata, P.J.; Castillo, S.; Valero, D. The Addition of Essential Oils to MAP as a Tool to Maintain the Overall Quality of Fruits. Trends Food Sci. Technol. 2008, 19, 464–471. [Google Scholar] [CrossRef]
- Miedes, E.; Lorences, E.P. Apple (Malus domestica) and Tomato (Lycopersicum esculentum) Fruits Cell-Wall Hemicelluloses and Xyloglucan Degradation during Penicillium expansum Infection. J. Agric. Food Chem. 2004, 52, 7957–7963. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, J.A.L. Methods for Gene Function Analysis in Botrytis cinerea. Trends Plant Sci. 2006, 5, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.; Roein, Z.; Erfanimoghadam, J.; Aziznia, S. Application of Pectin Coating Containing Essential Oil for Increasing Quality of Strawberry Fruit. J. Postharvest Technol. 2017, 5, 83–94. [Google Scholar]
- Lahlali, R.; Serrhini, M.N.; Friel, D.; Jijakli, M.H. Predictive Modelling of Temperature and Water Activity (Solutes) on the in Vitro Radial Growth of Botrytis cinerea Pers. Int. J. Food Microbiol. 2007, 114, 1–9. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. Edible Coatings Enriched with Essential Oils for Extending the Shelf-Life of “Bravo de Esmolfe” Fresh-Cut Apples. Int. J. Food Sci. Technol. 2016, 51, 87–95. [Google Scholar] [CrossRef]
- Oriani, V.B.; Molina, G.; Chiumarelli, M.; Pastore, G.M.; Hubinger, M.D. Properties of Cassava Starch-Based Edible Coating Containing Essential Oils. J. Food Sci. 2014, 79, E189–E194. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Y.; Chen, C.H.; Lai, L.S. Effect of Tapioca Starch/Decolorized Hsian-Tsao Leaf Gum-Based Active Coatings on the Qualities of Fresh-Cut Apples. Food Bioproc. Tech. 2013, 6, 2059–2069. [Google Scholar] [CrossRef]
- Sarengaowa; Hu, W.; Jiang, A.; Xiu, Z.; Feng, K. Effect of Thyme Oil–Alginate-Based Coating on Quality and Microbial Safety of Fresh-Cut Apples. J. Sci. Food Agric. 2018, 98, 2302–2311. [Google Scholar] [CrossRef]
- Sumonsiri, N.; Danpongprasert, W.; Thaidech, K. Comparison of Sweet Orange (Citrus sinensis) and Lemon (Citrus limonum) Essential Oils on Qualities of Fresh-Cut Apples during Storage. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2020, 21, 47–57. [Google Scholar]
- Augusto, A.; Miranda, A.; Crespo, D.; Campos, M.J.; Raimundo, D.; Pedrosa, R.; Mitchell, G.; Niranjan, K.; Silva, S.F.J. Preservation of Fresh-Cut Rocha Pear Using Codium tomentosum Extract. LWT 2022, 155, 112938. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Ban, Z.; Yan, J.; Lu, H.; Zhang, X.; Wu, Q.; Aghdam, M.S.; Luo, Z.; Li, L. Efficient Microencapsulation of Syringa Essential Oil; the Valuable Potential on Quality Maintenance and Storage Behavior of Peach. Food Hydrocoll. 2019, 95, 177–185. [Google Scholar] [CrossRef]
- Mou, L.; Du, X.; Lu, X.; Lu, Y.; Li, G.; Li, J. Component Analysis and Antifungal Activity of Three Chinese Herbal Essential Oils and Their Application of Postharvest Preservation of Peach Fruit. LWT 2021, 151, 112089. [Google Scholar] [CrossRef]
- Arrebola, E.; Sivakumar, D.; Bacigalupo, R.; Korsten, L. Combined Application of Antagonist Bacillus amyloliquefaciens and Essential Oils for the Control of Peach Postharvest Diseases. Crop Prot. 2010, 29, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Alamri, S.A.M.; Hashem, M.; Alqahtani, M.S.A.; Alshehri, A.M.A.; Mohamed, Z.A.; Ziedan, E.S.H. Formulation of Mint and Thyme Essential Oils with Arabic Gum and Tween to Enhance Their Efficiency in the Control of Postharvest Rots of Peach Fruit. Can. J. Plant Pathol. 2020, 42, 330–343. [Google Scholar] [CrossRef]
- Lin, H.J.; Lin, Y.L.; Huang, B.B.; Lin, Y.T.; Li, H.K.; Lu, W.J.; Lin, T.C.; Tsui, Y.C.; Lin, H.T.V. Solid- and Vapour-Phase Antifungal Activities of Six Essential Oils and Their Applications in Postharvest Fungal Control of Peach (Prunus persica L. Batsch). LWT 2022, 156, 113031. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; de Martino, L.; de Feo, V. In Vivo Antifungal Activity of Two Essential Oils from Mediterranean Plants against Postharvest Brown Rot Disease of Peach Fruit. Ind. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Cindi, M.D.; Soundy, P.; Romanazzi, G.; Sivakumar, D. Different Defense Responses and Brown Rot Control in Two Prunus persica Cultivars to Essential Oil Vapours after Storage. Postharvest Biol. Technol. 2016, 119, 9–17. [Google Scholar] [CrossRef]
- Lian, H.; Shi, J.; Zhang, X.; Peng, Y.; Meng, W.; Pei, L. Effects of Different Kinds of Polysaccharides on the Properties and Inhibition of Monilinia fructicola of the Thyme Essential Oil-Chitosan Based Composite Films. Food Sci. Technol. 2022, 42, 42–50. [Google Scholar] [CrossRef]
- Lian, H.; Shi, J.; Zhang, X.; Peng, Y. Effect of the Added Polysaccharide on the Release of Thyme Essential Oil and Structure Properties of Chitosan Based Film. Food Packag. Shelf Life 2020, 2, 100467. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, J.; Wei, Y.; Han, P.; Dai, K.; Zou, X.; Jiang, S.; Xu, F.; Wang, H.; Sun, J.; et al. Tea Tree Oil Controls Brown Rot in Peaches by Damaging the Cell Membrane of Monilinia fructicola. Postharvest Biol. Technol. 2021, 175, 111474. [Google Scholar] [CrossRef]
- Fontana, D.C.; Neto, D.D.; Pretto, M.M.; Mariotto, A.B.; Caron, B.O.; Kulczynski, S.M.; Schmidt, D. Using Essential Oils to Control Diseases in Strawberries and Peaches. Int. J. Food Microbiol. 2021, 338, 108980. [Google Scholar] [CrossRef] [PubMed]
- Arasu, M.V.; Viayaraghavan, P.; Ilavenil, S.; Al-Dhabi, N.A.; Choi, K.C. Essential Oil of Four Medicinal Plants and Protective Properties in Plum Fruits against the Spoilage Bacteria and Fungi. Ind. Crops Prod. 2019, 133, 54–62. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Wang, X.; Huang, Y.; Xiao, M.; Hu, Y.; Zhang, J. Antifungal electrospinning nanofiber film incorporated with Zanthoxylum bungeanum essential oil for strawberry and sweet cherry preservation. LWT 2022, 169, 113992. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Jia, X.; Xin, L.; Zhai, H. Antifungal Effects and Potential Mechanism of Essential Oils on Collelotrichum gloeosporioides in Vitro and in Vivo. Molecules 2019, 24, 3386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabigol, A. Effect of Salvia officinalis Essential Oil on Postharvest Decay and Quality Factors of Strawberry. Acta Hortic. 2014, 1049, 933–938. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. The Control of Botrytis Fruit Rot in Strawberry Using Combined Treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum Essential Oil. J. Food Sci. Technol. 2015, 52, 7441–7448. [Google Scholar] [CrossRef]
- Naserzadeh, Y.; Mahmoudi, N.; Pakina, E. Antipathogenic Effects of Emulsion and Nanoemulsion of Cinnamon Essential Oil against Rhizopus Rot and Grey Mold on Strawberry Fruits. Foods Raw Mater. 2019, 7, 210–216. [Google Scholar] [CrossRef]
- Da Silva, P.P.M.; de Oliveira, J.; Biazotto, A.D.M.; Parisi, M.M.; da Glória, E.M.; Spoto, M.H.F. Essential Oils from Eucalyptus staigeriana F. Muell. Ex Bailey and Eucalyptus urograndis W. Hill Ex Maiden Associated to Carboxymethylcellulose Coating for the Control of Botrytis cinerea Pers. Fr. and Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. in Strawberries. Ind. Crops Prod. 2020, 156, 112884. [Google Scholar] [CrossRef]
- Mohammadi, L.; Ramezanian, A.; Tanaka, F.; Tanaka, F. Impact of Aloe Vera Gel Coating Enriched with Basil (Ocimum basilicum L.) Essential Oil on Postharvest Quality of Strawberry Fruit. J. Food Meas. Charact. 2021, 15, 353–362. [Google Scholar] [CrossRef]
- Yan, J.; Wu, H.; Chen, K.; Feng, J.; Zhang, Y. Antifungal Activities and Mode of Action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum Essential Oil Vapors against Botrytis cinerea and Their Potential Application to Control Postharvest Strawberry Gray Mold. Foods 2021, 10, 2451. [Google Scholar] [CrossRef]
- Abd-Elkader, D.Y.; Salem, M.Z.M.; Komeil, D.A.; Al-Huqail, A.A.; Ali, H.M.; Salah, A.H.; Akrami, M.; Hassan, H.S. Post-Harvest Enhancing and Botrytis cinerea Control of Strawberry Fruits Using Low Cost and Eco-Friendly Natural Oils. Agronomy 2021, 11, 1246. [Google Scholar] [CrossRef]
- Tančinová, D.; Mašková, Z.; Mendelová, A.; Foltinová, D.; Barboráková, Z.; Medo, J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022, 11, 2945. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Amini, J.; Saba, M.K.; Karimi, K.; Pertot, I. Preharvest and Postharvest Application of Garlic and Rosemary Essential Oils for Controlling Anthracnose and Quality Assessment of Strawberry Fruit During Cold Storage. Front. Microbiol. 2020, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Gloria, E.M.; Parisi, M.C.M.; Baggio, J.S.; Silva, P.P.M.; Ambrosio, C.M.S.; Spoto, M.H.F. Antifungal Activity of Essential Oils Associated with Carboxymethylcellulose against Colletotrichum acutatum in Strawberries. Sci. Hortic. 2019, 243, 261–267. [Google Scholar] [CrossRef]
- Oliveira, J.; Parisi, M.C.M.; Baggio, J.S.; Silva, P.P.M.; Paviani, B.; Spoto, M.H.F.; Gloria, E.M. Control of Rhizopus stolonifer in Strawberries by the Combination of Essential Oil with Carboxymethylcellulose. Int. J. Food Microbiol. 2019, 292, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, H.; Shi, F.; Wang, H.; Chen, K.; Feng, J.; Jia, W. Antifungal Activity Screening for Mint and Thyme Essential Oils against Rhizopus stolonifer and Their Application in Postharvest Preservation of Strawberry and Peach Fruits. J. Appl. Microbiol. 2021, 130, 1993–2007. [Google Scholar] [CrossRef]
- De Cal, A.; Melgarejo, P. Effects of Long-Wave UV Light on Monilinia Growth and Identification of Species. Plant Dis. 1999, 83, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, T.; Chen, S.; Li, Y.; Rashid, A. The Biochemical and Molecular Mechanisms of Softening Inhibition by Chitosan Coating in Strawberry Fruit (Fragaria x Ananassa) during Cold Storage. Sci. Hortic. 2020, 271, 109483. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active Packaging from Chitosan-Titanium Dioxide Nano-composite Film for Prolonging Storage Life of Tomato Fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef]
- Lian, H.; Peng, Y.; Shi, J.; Wang, Q. Effect of Emulsifier Hydrophilic-Lipophilic Balance (HLB) on the Release of Thyme Essential Oil from Chitosan Films. Food Hydrocoll. 2019, 97, 105213. [Google Scholar] [CrossRef]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey Mould of Strawberry, a Devastating Disease Caused by the Ubiquitous Necrotrophic Fungal Pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Jiang, X. Antifungal Activity and Mechanism of Tea Polyphenols against Rhizopus stolonifer. Biotechnol. Lett. 2015, 37, 1463–1472. [Google Scholar] [CrossRef]
- Børve, J.; Stensvand, A. Timing of Fungicide Applications against Anthracnose in Sweet and Sour Cherry Production in Norway. Crop Prot. 2006, 25, 781–787. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Ghahfarrokhi, M.G.; Eş, I. Basil-Seed Gum Containing Origanum vulgare Subsp. Viride Essential Oil as Edible Coating for Fresh Cut Apricots. Postharvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional Coating Composed of Eryngium campestre L. Essential Oil Encapsulated in Nano-Chitosan to Prolong the Shelf-Life of Fresh Cherry Fruits. Food Hydrocoll. 2021, 111, 106394. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The Use of Polysaccharide-Based Edible Coatings Enriched with Essential Oils to Improve Shelf-Life of Strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Hassan, H.S.; EL-Hefny, M.; Ghoneim, I.M.; El-Lahot, M.S.R.A.; Akrami, M.; Al-Huqail, A.A.; Ali, H.M.; Abd-Elkader, D.Y. Assessing the Use of Aloe vera Gel Alone and in Combination with Lemongrass Essential Oil as a Coating Material for Strawberry Fruits: HPLC and EDX Analyses. Coatings 2022, 12, 489. [Google Scholar] [CrossRef]
- Tomadoni, B.; Moreira, M.R.; Pereda, M.; Ponce, A.G. Gellan-Based Coatings Incorporated with Natural Antimicrobials in Fresh-Cut Strawberries: Microbiological and Sensory Evaluation through Refrigerated Storage. LWT 2018, 97, 384–389. [Google Scholar] [CrossRef]
- Vu, K.D.; Hollingsworth, R.G.; Leroux, E.; Salmieri, S.; Lacroix, M. Development of Edible Bioactive Coating Based on Modified Chitosan for Increasing the Shelf Life of Strawberries. Food Res. Int. 2011, 44, 198–203. [Google Scholar] [CrossRef]
- Aitboulahsen, M.; Zantar, S.; Laglaoui, A.; Chairi, H.; Arakrak, A.; Bakkali, M.; Zerrouk, M.H. Gelatin-Based Edible Coating Combined with Mentha pulegium Essential Oil as Bioactive Packaging for Strawberries. J. Food Qual. 2018, 2018, 8408915. [Google Scholar] [CrossRef] [Green Version]
Pathogens | Abbreviations | Fruit | Disease |
---|---|---|---|
Alternaria alternata (Fr.) Keissl. (Basionym: Torula alternata Fr.) | AA | Stone | Brown spot |
Aspergillus carbonarius (Bainier) Thom (Basionym: Sterigmatocystis carbonaria Bainier) | AC | Pome | Bunch rot |
Aspergillus flavus Link | AF | Stone | Green mold |
Aspergillus niger Tiegh. | AN | Stone | Black mold |
Botrytis cinerea Pers. | BC | Pome–Stone | Gray mold |
Colletotrichum acutatum J.H. Simmonds | CA | Pome–Stone | Antrachnose |
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (Basionym: Vermicularia gloeosporioides Penz.) | CG | Pome–Stone | Antrachnose |
Colletotrichum nymphaeae (Pass.) Aa (Basionym: Ascochyta nymphaeae Pass.) | CN | Stone | Antrachnose |
Monilinia fructicola (G. Winter) Honey (Basionym: Ciboria fructicola G. Winter) | MFC | Stone | Brown rot |
Monilinia fructigena (Pers.) Honey (Basionym: Torula fructigena Pers.) | MFG | Pome–Stone | Brown rot |
Monilinia laxa (Aderh. & Ruhland) Honey (Basionym: Sclerotinia laxa Aderh. & Ruhland) | ML | Pome–Stone | Brown rot |
Mucor piriformis A. Fisch. | MP | Stone | Brown rot |
Penicillium expansum Link | PE | Pome–Stone | Blue mold |
Penicillium notatum Westling (current name: Penicillium chrysogenum Thom) | PN | Stone | Green mold |
Rhizopus microsporus Tiegh. | RM | Stone | Rotten spots |
Rhizopus stolonifer (Ehrenb.) Vuill. (Basionym: Mucor stolonifer Ehrenb.) | RS | Pome–Stone | Rotten spots |
Trichothecium roseum (Pers.) Link (Basionym: Trichoderma roseum Pers.) | TR | Pome | Core rot |
Fruit | Pathogens | EO | Coating | EOs Application Method | Reference |
---|---|---|---|---|---|
Apples | Aspergillus carbonarius | Cinnamon | Na-alginate coating | Inclusion in coating | [74] |
Botrytis cinerea | Oregano, savory, and thyme | Dropped | [27] | ||
Lime, lemon, and lemongrass | Thermofogging treatment | [31] | |||
Thyme and savory | Dropped | [26] | |||
Thyme | Starch–gellan coating | Dropped | [75] | ||
Fennel, thyme, lavender, neem, pennyroyal, salvia and asafetida | Dropped | [76] | |||
cinnamon, pimento, and laurel | Spray | [33] | |||
Cinnamomum zeylanicum, Zataria multiflora, and Satureja khuzestanica | Macro-sized bacterial cellulose coating emulsion | [77] | |||
Pelargonium graveolens | Volatile activity test | [78] | |||
Fennel oil | Films were prepared with SSOS, chitosan | Vapor | [79] | ||
Thyme and savory | Fumigation | [34] | |||
Colletotrichum acutatum and C. gloeosporioides | Lemongrass | Poly(lactic acid) nanocapsules | Inclusion in nanocapsules | [80] | |
Monilinia laxa and M. fructigena | Eucalyptus radiata ssp. Mentha pulegium, Rosmarinus officinalis, Origanum compactum, Lavandula angustifolia, Syzygium aromaticum, Thymus vulgaris, Citrus aurantium, and Citrus sinensis | Wound application | [70] | ||
Penicillium expansum | Cinnamomum zeylanicum, Zataria multiflora, and Satureja khuzestanica | Macro-sized bacterial cellulose coating emulsion | [77] | ||
Pelargonium graveolens | Volatile activity test | [78] | |||
Fennel | Films were prepared with SSOS, chitosan | Vapor | [79] | ||
Oregano, savory, and thyme | Dropped | [27] | |||
Cinnamon | Chitosan and sodium alginate | Coating | [81] | ||
Exogenous EO decanal | Dropped | [82] | |||
Rhizopus stolonifer | Pelargonium graveolens | Volatile activity test | [78] | ||
Trichothecium roseum | Fennel | Films were prepared with SSOS, chitosan | Vapor | [79] | |
Pears | Aspergillus carbonarius | Cinnamon | Na-alginate coating | Inclusion in coating | [74] |
Botrytis cinerea | Cinnamon, rosemary, and marjoram EOs | Dropped | [83] | ||
Penicillium expansum | Cinnamon, rosemary, and marjoram EOs | Dropped | [83] | ||
Eucalyptus and rosemary | Vapor | [28] | |||
Exogenous EO decanal | Dropped | [82] |
Fruit | Pathogen | Coating | EOs | Results | Reference |
---|---|---|---|---|---|
Apples | Total molds, yeast and mesophilic microorganisms | Alginate 1% and 2% or Pectin 1% and 2% Ascorbic acid 1% Calcium chloride 1% | Citral 0.15, 0.3% Eugenol 0.1, 0.2% Eugenol 0.1% + Citral 0.15% | Coatings were effective in inhibiting yeasts and molds and reducing ~2 logs CFU/g mesophilic bacteria during 8 days of storage compared to uncoated fruit. | [89] |
Cassava starch 2% Glycerol 0.5% | Cinnamon 0.1, 0.3% Fennel 0.1, 0.3% | Only EC with cinnamon 0.3% was capable of inhibiting pathogens in vitro. EOs at 0.3% provided better color in 4 days | [90] | ||
Tapioca starch 0.3% + dHG1 0.3% Glycerol 1.7% Ascorbic acid 1%/ Calcium chloride 1% | Cinnamon 0.2% | EO treatments reduced 4 log cycles of mesophilic and psychrophilic bacteria and 3 log cycles reduction in yeasts and molds after 12 days of storage. | [91] | ||
Total aerobic bacteria, coliforms, yeasts and molds | Alginate 1.29% Glycerol 1.5% Calcium chloride 2% Ascorbic acid 1% Citric acid 1% | Thyme 0.05%, 0.35% and 0.65% | Lower concentrations of EOs were more effective in reducing total aerobic bacteria, coliforms, yeasts, and molds, increasing shelf life in 8 days. | [92] | |
Total mesophilic | Pectin 2%, Whey protein 1%, Calcium chloride 2% | Sweet orange 0.1% and 0.15% | EOs at 0.15% slightly reduced (>1 log cycle) total mesophilic counts. | [93] | |
Pears | Total mould and yeasts | - | Seaweed 0.50% (w/v) | Treated pears displayed lower counts of mold and yeasts. | [94] |
Fruit | Pathogens | EOs | Coating | EOs Application Method | Reference |
---|---|---|---|---|---|
Apricots | Monilinia fructicola Botrytis cinerea | Thymus vulgaris Eugenia caryophyllata | - | Spray | [10] |
Peaches/nectarines | Alternaria alternata | Syringa EO | - | Inclusion in microcapsules | [95] |
Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | ||
Aspergillus flavus | Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | |
Botrytis cinerea | Lemongrass and Thymus vulgaris | - | Wound application | [97] | |
Syringa vulgaris | - | Inclusion in microcapsules | [95] | ||
Mint and thyme | Arabic gum 10% and Tween 20 | Coating | [98] | ||
Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | ||
Rosewood EO | - | Vapor-phase and fumigation | [99] | ||
Monilinia laxa | Thymus vulgaris and verbena | - | Spray | [100] | |
Thymus vulgaris and cinnamon | - | Vapor | [101] | ||
M. fructicola | Thymus vulgaris and verbena | - | Spray | [100] | |
Thymus vulgaris and savory | - | Biofumigation | [9] | ||
Thymus vulgaris | Chitosan 1.8%-Arabic gum 0.6% (w/v) | Coating and fumigation | [102] | ||
Thymus vulgaris | Chitosan 1.8%-Arabic gum 0.6% (w/v) | Coating | [103] | ||
Tea tree EO | - | Vapor | [104] | ||
Aloysia citriodora, Cymbopogon winterianus, Lippia alba, and Ocimum americanum EOs | [105] | ||||
Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | ||
Thymus vulgaris and verbena | - | Spray | [100] | ||
Mucor piriformis | Rosewood EO | - | Vapor-phase and fumigation | [99] | |
Penicillium expansum | Lemongrass and thyme EOs | - | Wound application | [97] | |
Mint and thyme EOs | Arabic gum 10% and Tween 20 | Coating | [98] | ||
Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | ||
Rosewood EO | - | Vapor-phase and fumigation | [99] | ||
Rhizopus stolonifer | Lemongrass and thyme EOs | - | Wound Application | [97] | |
Mint and thyme EOs | Arabic gum 10% and Tween 20 | Coating | [98] | ||
Alpinia officinarum, Cortex dictamni, and Artemisia argyi | - | Inclusion in microemulsion | [96] | ||
Rosewood EO | - | Vapor-phase and fumigation | [99] | ||
Plums | Aspergillus flavus Aspergillus niger Penicillium notatum | Allium sativum | - | Fumigation | [106] |
Rhizopus microsporus | |||||
Sweet cherries | Aspergillus flavus Botrytis cinerea Penicillium (CGMCC 3.13650) | Zanthoxylum bungeanum | Polyvinyl alcohol-β-Cyclodextrin nanofiber film | Incorporation in nanofibers films | [107] |
Collelotrichum gloeosporioides | Clove | - | Filter paper discs | [108] | |
Strawberries | Aspergillus flavus | Zanthoxylum bungeanum | Polyvinyl alcohol-β-Cyclodextrin nanofibers-film | [107] | |
Botrytis cinerea | Salvia officinalis, | [109] | |||
Zataria multiflora, and Cinnamomum zeylanicum | Chitosan | Dipping | [110] | ||
Cinnamon | Emulsion and nanoemulsion | [111] | |||
Eucalyptus staigeriana and Eucalyptus urograndis | Carboxymethylcellulose | Dipping | [112] | ||
Basil | Aloe vera gel coating | Dipping | [113] | ||
Aloysia citriodora, Cymbopogon winterianus, Lippia alba, and Ocimum americanum | [105] | ||||
Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum | Vapor | [114] | |||
Eucalyptus camaldulensis, Mentha piperita, Moringa oleifera FO | Vapor | [115] | |||
CT thymol lemongrass, litsea, lavender, peppermint, mint, petitgrain, sage, and thyme | [116] | ||||
Zanthoxylum bungeanum | Polyvinyl alcohol-β-Cyclodextrin nanofibers-film | [107] | |||
Colletotrichum nymphaeae | Allium sativum and Rosmarinus officinalis | Vapor | [117] | ||
C. acutatum | Thyme, cinnamon bark, and clove bud | Fumigation | [3] | ||
Aloysia citriodora, Cymbopogon winterianus, Lippia alba, and Ocimum americanum | [105] | ||||
Eucalyptus staigeriana, Lippia sidoides, and Pimenta pseudocaryophyllus | Carboxymethylcellulose | Dipping | [118] | ||
M. fructicola | Aloysia citriodora, Cymbopogon winterianus, Lippia alba, and Ocimum americanum | [105] | |||
Penicillium (CGMCC 3.13650) | Zanthoxylum bungeanum | Polyvinyl alcohol-β-Cyclodextrin nanofiber film | Incorporation in nanofibers films | [107] | |
Rhizopus stolonifer | Eucalyptus staigeriana, Lippia sidoides, and Pimenta pseudocaryophyllus | Carboxymethylcellulose | Dipping | [119] | |
Cinnamon | Emulsion and nanoemulsion | [111] | |||
Eucalyptus staigeriana and Eucalyptus urograndis | Carboxymethylcellulose | Dipping | [112] | ||
Mentha spicata, Mentha piperita, Thymus vulgaris CT carvacrol, and Thymus vulgaris CT thymol | Fumigation | [120] |
Fruit | Pathogen | Coating | EOs | Results | Reference |
---|---|---|---|---|---|
Apricots | Mesophilic aerobic bacteria and for mold and yeast counts | Basil seed gum 5% Glycerol 30% w/w Tween-20 15% Oregano EO (0–6% v/v) | Oregano | When increasing OEO concentration, there is an incremental reduction to 31.81% and 25.65% of the total plate counts and yeast and mold counts, respectively | [128] |
Sweet cherries | Mesophilic aerobic bacteria | Chitosan 1:3.2 (w/v) Tween 80 0.5 wt% pentasodium tripolyphosphate 0.3% (w/v) | Eryngium campestre EO (800, 1600, 2400, and 3200 mg L−1) | Reduction in total bacteria population of around 4 log CFU mL−1 | [129] |
Strawberries | Total molds, yeast, and mesophilic microorganisms | Aliginate 2% Pectin 2% | Eugenol (0.1–0.2%) Citral (0.15–0.3%) | Decrease in aerobic mesophilic microrganisms, yeasts, and molds development | [130] |
Total molds, yeast, and mesophilic microorganisms | Aloe vera gel (20–40%) Tween 80 (0–01% w/v) | Lemongrass 1% | Lower total aerobic mesophilic bacteria and yeast and mold counts | [131] | |
Gellan gum (0.5% w/v) Glycerol (0.56% w/v) | Geraniol 1.2–2.4 μL mL−1 Pomegranate extract 360–720 μg mL−1 | Psychrophilic bacteria, yeast, mold, and mesophilic bacteria counts were lower and more constant than the control | [132] | ||
Chitosan and Tween 80 | Red thyme, peppermint and limonene | Preservative action on the stored strawberries | [133] | ||
Gelatin 1:25 (w/v) Sorbitol w/w Tween 80 | Peppermint 0.5–1% | The incorporation of mint EO into gelatin-based edible coating inhibited total aerobic mesophilic flora, molds, and yeasts. | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magri, A.; Curci, M.; Battaglia, V.; Fiorentino, A.; Petriccione, M. Essential Oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family Fruits. AppliedChem 2023, 3, 196-216. https://doi.org/10.3390/appliedchem3020013
Magri A, Curci M, Battaglia V, Fiorentino A, Petriccione M. Essential Oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family Fruits. AppliedChem. 2023; 3(2):196-216. https://doi.org/10.3390/appliedchem3020013
Chicago/Turabian StyleMagri, Anna, Martina Curci, Valerio Battaglia, Antonio Fiorentino, and Milena Petriccione. 2023. "Essential Oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family Fruits" AppliedChem 3, no. 2: 196-216. https://doi.org/10.3390/appliedchem3020013
APA StyleMagri, A., Curci, M., Battaglia, V., Fiorentino, A., & Petriccione, M. (2023). Essential Oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family Fruits. AppliedChem, 3(2), 196-216. https://doi.org/10.3390/appliedchem3020013