Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, R.A. Air and Rain, the Beginnings of a Chemical Climatology; Longmans Green: London, UK, 1872. [Google Scholar]
- Cowling, E.B. Acid precipitation in historical perspective. Environ. Sci. Technol. 1982, 16, 110A–123A. [Google Scholar] [CrossRef]
- Gorham, E. Acid deposition and its ecological effects: A brief history of research. Environ. Sci. Policy 1998, 1, 153–166. [Google Scholar] [CrossRef]
- Roberts, L. Is acid deposition killing West German forests? BioScience 1983, 33, 302–305. [Google Scholar] [CrossRef]
- Hinrichsen, D. The forest decline enignma. BioScience 1987, 37, 542–546. [Google Scholar] [CrossRef]
- Pitelka, L.F.; Raynal, D.J. Forest decline and acidic deposition. Ecology 1989, 70, 2–10. [Google Scholar] [CrossRef]
- Almer, B.; Dickson, W.; Ekström, C.; Hörnström, E.; Miller, U. Effects of acidification on Swedish lakes. Ambio 1974, 3, 30–36. [Google Scholar]
- Almer, B.; Dickson, W. The discovery and early study of acidification of lakes in Sweden. Ambio 2021, 50, 266–268. [Google Scholar] [CrossRef]
- Strohbach, M.; Audorff, V.; Beierkuhnlein, C. Drivers of plant species composition in siliceous spring ecosystems: Groundwater chemistry, catchment traits or spatial factors? J. Limnol. 2009, 68, 375–384. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Beierkuhnlein, C. The ecological legacy of 20th century acidification carried on by ecosystem engineers. Appl. Veg. Sci. 2017, 20, 215–224. [Google Scholar] [CrossRef]
- Probst, A.; Party, J.P.; Fevrier, C.; Dambrine, E.; Thomas, A.L.; Stussi, J.M. Evidence of springwater acidification in the Vosges mountains (North-East of France): Influence of bedrock buffering capacity. Water Air Soil Pollut. 1999, 114, 395–411. [Google Scholar] [CrossRef]
- Williard, K.W.J.; Dewalle, D.R.; Edwards, P.J. Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-Appalachian forested watersheds. Water Air Soil Pollut. 2005, 160, 55–76. [Google Scholar] [CrossRef]
- Alewell, C.; Armbruster, M.; Bittersohl, J.; Evans, C.D.; Meesenburg, H.; Moritz, K.; Prechtel, A. Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrol. Earth Syst. Sci. 2001, 5, 367–378. [Google Scholar] [CrossRef]
- Stevens, C.J.; Gowing, D.J.G.; Wotherspoon, K.A.; Alard, D.; Aarrestad, P.A.; Bleeker, A.; Bobbink, R.; Diekmann, M.; Dise, N.B.; Duprè, C.; et al. Addressing the Impact of Atmospheric Nitrogen Deposition on Western European Grasslands. Environ. Manag. 2011, 48, 885–894. [Google Scholar] [CrossRef]
- Lepori, F.; Keck, F. Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio 2012, 41, 235–246. [Google Scholar] [CrossRef]
- Garmo, Ø.A.; Skjelkvåle, B.L.; de Wit, H.A.; Colombo, L.; Curtis, C.; Fölster, J.; Hoffmann, A.; Hruška, J.; Høgåsen, T.; Jeffries, D.S.; et al. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut. 2014, 225, 1880. [Google Scholar] [CrossRef]
- Grennfelt, P.; Engleryd, A.; Forsius, M.; Hov, Ø.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 2020, 49, 849–864. [Google Scholar] [CrossRef]
- Kopáček, J.; Hejzlar, J.; Stuchlík, E.; Fott, J.; Veselý, J. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnol. Oceanogr. 1998, 43, 357–361. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Jeffries, D.S.; Lükewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 1999, 401, 575–578. [Google Scholar] [CrossRef]
- Schaap, M.; Hendriks, C.; Kranenburg, R.; Kuenen, J.; Segers, A.; Schlutow, A.; Nagel, H.; Ritter, A.; Banzhaf, S. PINETI-3: Modellierung atmosphärischer Stoffeinträge von 2000 bis 2015 zur Bewertung der ökosystem-spezifischen Gefährdung von Biodiversität durch Luftschadstoffe in Deutschland. Texte Umweltbundesamt 2018, 79, 149. [Google Scholar]
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M.B.; et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019, 9, 953. [Google Scholar] [CrossRef]
- Vestreng, V.; Myhre, G.; Fagerli, H.; Reis, S.; Tarrasón, L. Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos. Chem. Phys. 2007, 7, 3663–3681. [Google Scholar] [CrossRef]
- Audorff, V. Vegetation Ecology of Springs: Ecological, Spatial and Temporal Patterns. Ph.D. Thesis, University of Bayreuth, Bayreuth, Germany, 2009. [Google Scholar]
- Decina, S.M.; Hutyra, L.R.; Templer, P.H. Hotspots of nitrogen deposition in the world’s urban areas: A global data synthesis. Front. Ecol. Environ. 2019, 18, 92–100. [Google Scholar] [CrossRef]
- Palmer, S.M.; Driscoll, C.T.; Johnson, C.E. Long-term trends in soil solution and stream water chemistry at the Hubbard Brook Experimental Forest: Relationship with landscape position. Biogeochemistry 2004, 68, 51–70. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C.; Mitchell, M.J.; Lovett, G.M.; Bailey, S.W.; Siccama, T.G.; Reiners, W.A.; Alewell, C. The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 2002, 60, 235–316. [Google Scholar] [CrossRef]
- Rosi-Marshall, E.J.; Bernhardt, E.S.; Buso, D.C.; Driscoll, C.T.; Likens, G.E. Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen. Proc. Natl. Acad. Sci. USA 2016, 113, 7580–7583. [Google Scholar] [CrossRef]
- Cho, Y.; Driscoll, C.T.; Johnson, C.E.; Blum, J.D.; Fahey, T.J. Watershed-Level Responses to Calcium Silicate Treatment in a Northern Hardwood Forest. Ecosystems 2012, 15, 416–434. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Mielikäinen, K.; Kuusela, K. Biomass and carbon budget of European forests, 1971 to 1990. Science 1992, 256, 70–74. [Google Scholar] [CrossRef]
- Jandl, R.; Alewell, C.; Prietzel, J. Calcium Loss in Central European Forest Soils. Soil Sci. Soc. Am. J. 2004, 68, 588–595. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Audorff, V.; Beierkuhnlein, C. The acid taste of climate change: 20th century acidification is re-emerging during a climatic extreme event. Ecosphere 2015, 6, art94. [Google Scholar] [CrossRef]
- Kleber, A.; Lindemann, J.; Schellenberger, A.; Beierkuhnlein, C.; Kaupenjohann, M.; Peiffer, S. Slope deposits and water paths in a spring catchment, Frankenwald, Bavaria, Germany. Nutr. Cycling Agroecosyst. 1998, 50, 119–126. [Google Scholar]
- Kleber, A. Periglacial slope deposits and their pedogenic implications in Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1992, 99, 361–371. [Google Scholar] [CrossRef]
- Semmel, A. Hauptlage und Oberlage als umweltgeschichtliche Indikatoren; Hauptlage und Oberlage als umweltgeschichtliche Indikatoren; Solifluction layers (“Hauptlage” and “Oberlage”) as indicators of environmental history. Z. Fuer Geomorphol. 2002, 46, 167–180. [Google Scholar] [CrossRef]
- Beierkuhnlein, C.; Durka, W. Beurteilung von Stoffausträgen immissionsbelasteter Waldökosysteme Nordostbayerns durch Quellwasseranalysen. Forstw. Cbl. 1993, 112, 225–239. [Google Scholar] [CrossRef]
- Thienemann, A. Hydrobiologische Untersuchungen an Quellen. Arch. Hydrobiol. 1924, 14, 151–190. [Google Scholar]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Naturräumliche Gliederung Bayerns—Bayerisches Landesamt für Umwelt. Available online: https://www.lfu.bayern.de/natur/naturraeume/index.htm (accessed on 19 July 2024).
- Forest Type 2018—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/en/products/high-resolution-layer-forest-type/forest-type-2018 (accessed on 19 July 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 19 July 2024).
- DWD. Climate Data Center (CDC): Grids of Monthly Averaged Daily Air Temperature (2m) over Germany, Version v1.0. 2021. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/air_temperature_mean/ (accessed on 19 July 2024).
- Bayerische Waldklimastationen, Bayerische Landesanstalt für Wald und Forstwirtschaft. Available online: https://www.lwf.bayern.de/wks (accessed on 19 July 2024).
- ESRI. ArcGIS Desktop: Release 108.2; Environmental Systems Research Institute: Redlands, CA, USA, 2024. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Audorff, V.; Kapfer, J.; Beierkuhnlein, C. The role of hydrological and spatial factors for the vegetation of Central European springs. J. Limnol. 2011, 70, 9. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Kleyer, C.; Balaban, S.I.; Pöllmann, H.; Füssel, M. A natural GMS Laboratory (Granulometry-Morphometry-Situmetry): Geomorphological-sedimentological-mineralogical terrain analysis linked to coarse-grained siliciclastic sediments at the basement-foreland boundary (SE Germany). Minerals 2022, 12, 1118. [Google Scholar] [CrossRef]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- Mohr, S.; Wilhelm, J.; Wandel, J.; Kunz, M.; Portmann, R.; Punge, H.J.; Schmidberger, M.; Quinting, J.F.; Grams, C.M. The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018. Weather Clim. Dynam. 2020, 1, 325–348. [Google Scholar] [CrossRef]
- Zeder, J.; Fischer, E.M. Observed extreme precipitation trends and scaling in Central Europe. Weather. Clim. Extremes 2020, 29, 100266. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Europe’s Changing Climate Hazards; Publications Office: Copenhagen, Denmark, 2021; ISBN 1977-8449. [Google Scholar]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 34062. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). State of the Global Climate 2021: WMO Provisional Report; WMO: Geneva, The Switzerland, 2021. [Google Scholar]
- 25 Jahre Versauerungsmonitoring. Available online: https://www.lfu.bayern.de/wasser/25_jahre_versauerungsmonitoring/niederschlag/index.htm (accessed on 2 September 2024).
- Tukey, H.B. The leaching of substances from plants. Annu. Rev. Plant Physiol. 1970, 21, 305–324. [Google Scholar] [CrossRef]
- Staśko, S.; Buczyński, S. Drought and its effects on spring discharge regimes in Poland and Germany during the 2015 drought. Hydrol. Sci. J. 2018, 63, 741–751. [Google Scholar] [CrossRef]
- Vlach, V.; Ledvinka, O.; Matouskova, M. Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water 2020, 12, 3575. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Beierkuhnlein, C. Räumliche Analyse der Stoffausträge aus Waldgebieten durch Untersuchung von Waldquellfluren. Die Erde 1991, 122, 291–315. [Google Scholar]
- Schweiger, A.H.; Beierkuhnlein, C. Water temperature and acidity regime shape dominance and beta-diversity patterns in the plant communities of springs. Front. Biogeogr. 2014, 6, 132–143. [Google Scholar] [CrossRef]
Year | 1996 | 2003 | 2004 | 2005 | 2006 | 2007 | 2012 | 2013 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Month | September/ October | September | September | September/ October | September | September | September | September | September | September | September |
Discharge Category | Approximate Discharge [L/s] |
---|---|
without discharge, water flow not visible, sampling not possible | 0.00 L/s |
seeping, water flow not visible, sampling hardly possible | 0.02 L/s |
very low, water flow visible, sampling sometimes possible | 0.05 L/s |
low, water flow visible and slightly turbulent, sampling usually possible | 0.20 L/s |
middle, water flow turbulent, sampling well possible | 0.50 L/s |
high, water flow strongly turbulent, sampling easily possible | 1.00 L/s |
very high, torrent-like flow | 2.00 L/s |
Fixed Effects | β | Std. Error | t-Value | Random Effects | σ2 | σ | |
---|---|---|---|---|---|---|---|
FRW and FGB | Intercept | 0.00854 | 0.0177 | 0.483 | |||
Δ Discharge | −0.163 | 0.0206 | −7.92 | ||||
SpringID | 0.0215 | 0.147 | |||||
Residuals | 0.240 | 0.490 | |||||
FRW | Intercept | 0.000356 | 0.0277 | 0.0130 | |||
Δ Discharge | −0.255 | 0.0353 | −7.24 | ||||
SpringID | 0.0237 | 0.154 | |||||
Residuals | 0.356 | 0.597 | |||||
FGB | Intercept | 0.0246 | 0.0217 | 1.13 | |||
Δ Discharge | −0.0677 | 0.0223 | −3.03 | ||||
SpringID | 0.0177 | 0.133 | |||||
Residuals | 0.138 | 0.372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beierkuhnlein, C.; Djordjevic, B.; Höger, J.; Wilkens, V.; Shrestha, S.N.; Smith, T.; Weiser, F. Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change. Hydrobiology 2024, 3, 325-336. https://doi.org/10.3390/hydrobiology3040020
Beierkuhnlein C, Djordjevic B, Höger J, Wilkens V, Shrestha SN, Smith T, Weiser F. Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change. Hydrobiology. 2024; 3(4):325-336. https://doi.org/10.3390/hydrobiology3040020
Chicago/Turabian StyleBeierkuhnlein, Carl, Bojan Djordjevic, Johannes Höger, Vincent Wilkens, Samip Narayan Shrestha, Timothy Smith, and Frank Weiser. 2024. "Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change" Hydrobiology 3, no. 4: 325-336. https://doi.org/10.3390/hydrobiology3040020
APA StyleBeierkuhnlein, C., Djordjevic, B., Höger, J., Wilkens, V., Shrestha, S. N., Smith, T., & Weiser, F. (2024). Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change. Hydrobiology, 3(4), 325-336. https://doi.org/10.3390/hydrobiology3040020