Genetic and Haplotype Diversity of Clarias gariepinus (Burchell 1822) Based on Cytochrome c Oxidase I (COI) Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Diversity, Phylogenetic Analysis, and Genetic Structure
2.2. Neutrality and Population Size Change Test
3. Results
3.1. Haplotype Network and Genetic Diversity
3.2. Phylogenetic Analysis
3.3. Molecular Variance Analysis
3.4. Demographic History and Neutrality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giddelo, C.S.; Arndt, A.D.; Volckaert, F.A.M. Impact of Rifting and Hydrogeography on the Genetic Structure of Clarias gariepinus in Eastern Africa. J. Fish Biol. 2002, 60, 1252–1266. [Google Scholar] [CrossRef]
- Rapatsa, M.; Moyo, N. A Review and Meta-analysis of the Effects of Replacing Fishmeal with Insect Meals on Growth of Tilapias and Sharptooth Catfish. Aquac. Nutr. 2022, 2022, 67587. [Google Scholar] [CrossRef]
- Bal, A.; Panda, F.; Pati, S.G.; Anwar, T.N.; Das, K.; Paital, B. Influence of anthropogenic activities on redox regulation and oxidative stress responses in different phyla of animals in coastal water via changing in salinity. Water 2022, 14, 4026. [Google Scholar] [CrossRef]
- Adeleke, B.; Robertson-Andersson, D.; Moodley, G.; Taylor, S. Aquaculture in Africa: A comparative review of Egypt, Nigeria, and Uganda Vis-À-Vis South Africa. Rev. Fish. Sci. Aquac. 2020, 29, 167–193. [Google Scholar] [CrossRef]
- De Alwis, P.S.; Kundu, S.; Gietbong, F.Z.; Amin, M.H.F.; Lee, S.R.; Kim, H.W.; Kim, A.R. Mitochondriomics of Clarias Fishes (Siluriformes: Clariidae) with a New Assembly of Clarias camerunensis: Insights into the Genetic Characterization and Diversification. Life 2023, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Wachirachaikarn, A.; Rungsin, W.; Srisapoome, P.; Na-Nakorn, U. Crossing of African catfish, Clarias gariepinus (Burchell, 1822), strains based on strain selection using genetic diversity data. Aquaculture 2009, 290, 53–60. [Google Scholar] [CrossRef]
- Tine, M.; Ndiaye, F.; Bale, K.; Magblenou, L.D.; Sene, M.A. Effects of inbreeding depression on the success of artificial reproduction in the African catfish Clarias gariepinus (Burchell, 1822). Int. J. Aquac. Fish. Sci. 2022, 8, 45–53. [Google Scholar]
- Barasa, J.E.; Abila, R.; Grobler, J.P.; Agaba, M.; Chemoiwa, E.J.; Kaunda-Arara, B. High genetic diversity and population differentiation in Clarias gariepinus of Yala Swamp: Evidence from mitochondrial DNA sequences. J. Fish Biol. 2016, 89, 2557–2570. [Google Scholar] [CrossRef]
- Mwakubo, S.M.; Ikiara, M.M.; Abila, R. Socio-economic and ecological determinants in wetland fisheries in the Yala Swamp. Wetl. Ecol. Manag. 2007, 15, 521–528. [Google Scholar] [CrossRef]
- Antoniou, A.; Magoulas, A. Application of Mitochondrial DNA in Stock Identification. Stock Identification Methods, 2nd ed.; Academic Press: Cambridge, UK, 2014; pp. 257–295. [Google Scholar] [CrossRef]
- Galbusera, P. The Genetic Variability of Wild and Inbred Population of the African Catfish Clarias gariepinus (Burchell, 1822). Ph.D. Thesis, K.U. Leuven, Leuven, Belgium, 1997. [Google Scholar]
- Barasa, J.E.; Abila, R.; Grobler, J.P.; Dangasuk, O.G.; Njahira, M.N.; Kaunda-Arara, B. Genetic diversity and gene flow in Clarias gariepinus from Lakes Victoria and Kanyaboli, Kenya. Afr. J. Aquat. Sci. 2014, 39, 287–293. [Google Scholar] [CrossRef]
- Kundu, S.; De Alwis, P.S.; Binarao, J.D.; Lee, S.-R.; Kim, A.R.; Gietbong, F.Z.; Yi, M.; Kim, H.-W. Mitochondrial DNA Corroborates the Genetic Variability of Clarias Catfishes (Siluriformes, Clariidae) from Cameroon. Life 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Nucleic Acids Symposium Series No. 41; Oxford University Press: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 2007, 7, 965–968. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-Delbarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP v6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Rambaut, A. Figtree, A Graphical Viewer of Phylogenetic Trees, Version 1.4.4; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2018; Available online: https://github.com/rambaut/figtree/releases/tag/v1.4.4 (accessed on 25 November 2018).
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Biol. Evol. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Cambray, J.A. Africa’s Clarias gariepinus (Teleostei: Clariidae) appears in rivers in Brazil. Afr. J. Aquat. Sci. 2005, 30, 201–202. [Google Scholar] [CrossRef]
- Adan, R. Catfish culture in Southeast Asia. SEAFDEC Asian Aquac. 2000, 22, 16–17. [Google Scholar]
- Parvez, I.; Rumi, R.A.; Ray, P.R.; Hassan, M.M.; Sultana, S.; Pervin, R.; Suwanno, S.; Pradit, S. Invasion of African Clarias gariepinus Drives Genetic Erosion of the Indigenous C. batrachus in Bangladesh. Biology 2022, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, K.; Ali, A.; Pereira, B.; Raghavan, R. Unregulated aquaculture and invasive alien species: A case study of the African Catfish Clarias gariepinus in VembanadLake (Ramsar Wetland), Kerala, India. J. Threat. Taxa 2011, 3, 1737–1744. [Google Scholar] [CrossRef]
- Van Steenberge, M.W.; Vanhove, M.P.M.; Manda, A.C.; Larmuseau, M.H.D.; Swart, B.L.; Khang’Mate, F.; Arndt, A.; Hellemans, B.; Houdt, J.V.; Micha, J.C.; et al. Unravelling the evolution of Africa’s drainage basins through a widespread freshwater fish, the African sharptooth catfish Clarias gariepinus. J. Biogeogr. 2020, 47, 1739–1754. [Google Scholar] [CrossRef]
- Weyl, O.L.; Dagam, V.S.; Ellender, B.R.; Vitule, J.R. A review of Clarias gariepinus invasions in Brazil and South Africa. J. Fish Biol. 2016, 89, 386–402. [Google Scholar] [CrossRef]
- Nazia, A.K.; Suzana, M.; Azhar, H.; Nguyen Thuy, T.T.; Siti Azizah, M.N. No genetic differentiation between geographically isolated populations of Clarias macrocephalus in Malaysia revealed by sequences of mtDNA cytochrome b and D-loop gene regions. J. Appl. Ichthyol. 2010, 26, 568–570. [Google Scholar] [CrossRef]
- Barasa, J.E.; Mdyogolo, S.; Abila, R.; Grobler, J.P.; Skilton, R.A.; Bindeman, H.; Njahira, M.; Chemoiwa, E.J.; Dangasuk, O.J.; Kaunda-Arara, B.; et al. Genetic diversity and population structure of African catfish, Clarias gariepinus in Kenya: Implication for aquaculture and conservation. Belg. J. Zool. 2017, 147, 105–127. [Google Scholar]
- Meyer, A. DNA technology and phylogeny of fish. In Molecular Systematics and Evolution of Marine Organisms; Beaumont, A.R., Ed.; Chapman and Hall: London, UK, 1994; pp. 219–248. [Google Scholar]
- Luhariya, R.K.; Lal, K.K.; Singh, R.K.; Mohindra, V.; Punia, P.; Chauhan, U.K.; Gupta, A.; Lakra, W.S. Genetic divergence in wild population of Labeo rohita (Hamilton, 1822) from nine Indian rivers, analyzed through MtDNA cytochrome b region. Mol. Biol. Rep. 2012, 39, 3659–3665. [Google Scholar] [CrossRef]
- Hickerson, M.J.; Carstens, B.C.; Cavender-Bares, J.; Crandall, K.A.; Graham, C.H.; Johnson, J.B.; Yoder, A.D. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 2010, 5, 291–301. [Google Scholar] [CrossRef]
- Fatsi, P.S.K.; Hashem, S.; Kodama, A.; Appiah, E.K.; Saito, H.; Kawai, K. Population genetics and taxonomic signatures of wild Tilapia in Japan based on mitochondrial DNA control region analysis. Hydrobiologia 2020, 847, 1491–1504. [Google Scholar] [CrossRef]
- Triantafyllidis, A.; Abatzopoulos, T.J.; Economidis, P.S. Genetic differentiation and phylogenetic relationships among Greek Silurus glanis and Sirulus aristotelis populations, assessed by PCR-RFLP analysis of mitochondrial DNA segments. Heredity 1999, 82, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R.; Kingsolver, J. Responses to Environmental Change: Adaptation or Extinction. In Evolutionary Conservation Biology; Cambridge University Press: London, UK, 2004; Volume 1, pp. 85–100. [Google Scholar] [CrossRef]
- Reddy, V.; Ray, L.K. Past and future joint return period of precipitation extremes over South Asia and Southeast Asia. Glob. Planet. Chang. 2024, 239, 104495. [Google Scholar] [CrossRef]
- Schaal, B.A.; Hayworth, D.A.; Olsen, K.M.; Rauscher, J.T.; Smith, W.A. Phylogeographic studies in plants: Problems and prospects. Mol. Ecol. 1998, 7, 465–474. [Google Scholar] [CrossRef]
- Templeton, A.R. Statistical hypothesis testing in intraspecific phylogeography: NCPA versus ABC. Mol. Ecol. 2009, 18, 319–331. [Google Scholar] [CrossRef]
- Wei, H.; Geng, L.; Shang, X.; Li, L.; Ma, B.; Zhang, Y.; Li, W.; Xu, W. Comparison genetic diversity and population structure of four Pseudaspius leptocephalus population in Heilongjiang River Basin based on mitochondrial COI gene. Front. Mar. Sci. 2023, 10, 1158845. [Google Scholar] [CrossRef]
- Rahman, M.; Bhadra, A.; Begum, N.; Islam, M.; Hussain, M. Production of hybrid vigor through cross breeding between Clarias batrachus Lin. and Clarias gariepinus Bur. Aquaculture 1995, 138, 125–130. [Google Scholar] [CrossRef]
- Senanan, W.; Kapuscinski, A.R.; Na-Nakorn, U.; Miller, L.M. Genetic impacts of hybrid catfish farming (Clarias macrocephalus × C. Gariepinus) on native catfish populations in central Thailand. Aquaculture 2004, 235, 167–184. [Google Scholar] [CrossRef]
- Tiogué, C.T.; Nyadjeu, P.; Mouokeu, S.R.; Tekou, G.; Tchoupou, H. Evaluation of Hybridization in Two African Catfishes (Siluriformes, Clariidae): Exotic (Clarias gariepinus Burchell, 1822) and Native (Clarias jaensis Boulenger, 1909) Species under Controlled Hatchery Conditions in Cameroon. Adv. Agric. 2019, 2020, 8985424. [Google Scholar] [CrossRef]
- Abit, L.Y.; Mojilis, M.I.V.; Latif, K.; Al-Asif, A. Successful hybridization between Clarias microstomus♂ and Clarias gariepinus♀. AACL. Bioflux 2023, 16, 3285–3295. [Google Scholar]
- Modeel, S.; Joshi, B.D.; Yadav, B.; Bharti, M.; Negi, R.K. Mitochondrial DNA reveals shallow population genetic structure in economically important Cyprinid fish Labeo rohita (Hamilton, 1822) from South and Southeast Asia. Mol. Biol. Rep. 2023, 50, 4759–4767. [Google Scholar] [CrossRef] [PubMed]
- Nneji, L.M.; Adeola, A.C.; Mustapha, M.K.; Oladipo, S.O.; Djagoun, C.A.M.S.; Nneji, I.C.; Adedeji, B.E.; Olatunde, O.; Ayoola, A.O.; Okeyoyin, A.O.; et al. DNA Barcoding Silver Butter Catfish (Schilbe intermedius) Reveals Patterns of Mitochondrial Genetic Diversity Across African River Systems. Sci. Rep. 2020, 10, 7097. [Google Scholar] [CrossRef] [PubMed]
- Hvilsom, C.; Segelbacher, G.; Ekblom, R.; Fischer, M.C.; Laikre, L.; Leus, K.; O’Brien, D.; Shaw, R.; Sork, V. Selecting Species and Populations for Monitoring of Genetic Diversity; IUCN: Gland, Switzerland, 2022. [Google Scholar]
- Sjöqvist, C.O.; Kremp, A. Genetic diversity affects ecological performance and stress response of marine diatom populations. ISME J. 2016, 10, 2755–2766. [Google Scholar] [CrossRef]
- Suleiman, I.O.; Moruf, R.O.; Usman, B.I. Population Genetic Structure of Feral and Cultured African catfish (C. gariepinus) inferred from Random Amplified Polymorphic DNA in Kano, Nigeria. Trop. J. Nat. Prod. Res. 2023, 7, 2650–2654. [Google Scholar]
Country | Genetic Diversity | Neutrality Test | |||||
---|---|---|---|---|---|---|---|
n | S | h | Hd | π | Tajima (D) | Fu’s Fs | |
Egypt | 7 | 2 | 3 | 0.52 | 0.0016 | −1.35 NS | −1.79 NS |
Nigeria | 21 | 2 | 3 | 0.4 | 0.0015 | −0.48 NS | −0.14 NS |
Indonesia | 6 | 6 | 2 | 0.6 | 0.01 | 2.25 NS | 6.77 NS |
Bangladesh | 3 | 6 | 2 | 0.66 | 0.01 | NA | NA |
Thailand | 13 | 8 | 3 | 0.41 | 0.007 | 0.06 NS | 3.04 NS |
India | 20 | 9 | 3 | 0.46 | 0.0075 | 0.18 NS | 4.34 NS |
Zimbabwe | 4 | 7 | 2 | 0.5 | 0.0098 | −0.84 NS | 4.6 NS |
China | 2 | 0 | 1 | 0 | 0 | NA | NA |
Turkey | 21 | 0 | 1 | 0 | 0 | NA | NA |
Cameroon | 13 | 7 | 2 | 0.5 | 0.0065 | −0.43 NS | 2.87 NS |
Algeria | 4 | 0 | 1 | 0 | 0 | NA | NA |
Malaysia | 2 | 0 | 1 | 0 | 0 | NA | NA |
Philippines | 5 | 2 | 2 | 0.4 | 0.0022 | −1.12 NS | 0.64 NS |
Congo | 10 | 1 | 2 | 0.5 | 0.0015 | −0.35 NS | 0.39 NS |
Brazil | 5 | 0 | 1 | 0 | 0 | NA | NA |
Uganda | 25 | 4 | 5 | 0.65 | 0.0026 | −0.77 NS | −3.2 NS |
Total | 161 | 22 | 17 | 0.87 | 0.012 | 0.31 | −0.31 |
Source of Variance | df | Sum of Squares | Variance Component | % Total of Variance | Significance |
---|---|---|---|---|---|
Among populations | 18 | 1766.958 | 10.414 | 76.03 | p < 0.001 |
Within populations | 145 | 476.085 | 3.283 | 23.97 | p < 0.001 |
Total | 163 | 2243.043 | 13.697 | 100 | p < 0.001 |
Egypt | Congo | Nigeria | Ethiopia | Uganda | Cameron | Algeria | Zimbabwe | Sudan | Malaysia | Indonesia | Syria | Philippines | Turkey | Bangladesh | Thailand | India | China | Brazil | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Egypt | 0 | * | * | * | * | * | * | * | * | * | * | * | |||||||
Congo | 0.99369 | 0 | * | * | * | * | * | * | * | * | * | * | * | * | * | ||||
Nigeria | −0.03424 | 0.87068 | 0 | * | * | * | * | * | * | * | * | ||||||||
Ethiopia | −0.83333 | 0.99535 | −0.88707 | 0 | * | * | * | * | * | * | * | ||||||||
Uganda | 0.98645 | 0.81673 | 0.90522 | 0.98523 | 0 | * | * | * | * | * | * | * | * | * | * | * | * | ||
Cameron | 0.20429 | 0.65997 | 0.13968 | −0.38625 | 0.76875 | 0 | * | * | |||||||||||
Algeria | 0.61763 | 0.99652 | −0.03011 | 1 | 0.98693 | 0.11628 | 0 | * | * | * | * | * | * | * | * | * | * | ||
Zimbabwe | 0.75296 | 0.85974 | 0.69942 | 0.33333 | 0.92261 | 0.45197 | 0.66839 | 0 | * | * | * | * | * | * | |||||
Sudan | −0.83333 | 0.99535 | −0.88707 | 0 | 0.98523 | −0.38625 | 1 | 0.33333 | 0 | * | * | * | * | * | |||||
Malaysia | 0.99245 | 0.80769 | 0.82461 | 1 | 0.77335 | 0.49473 | 1 | 0.63977 | 1 | 0 | * | * | * | * | |||||
Indonesia | 0.42429 | 0.50665 | 0.35525 | −0.2 | 0.69402 | 0.00512 | 0.32458 | 0.38803 | −0.2 | 0.15493 | 0 | * | |||||||
Syria | −0.83333 | 0.99535 | −0.88707 | 0 | 0.98523 | −0.38625 | 1 | 0.33333 | 0 | 1 | −0.2 | 0 | * | * | * | * | |||
Philippines | 0.99068 | 0.65901 | 0.84572 | 0.98993 | 0.76146 | 0.5835 | 0.99425 | 0.77465 | 0.98993 | −0.29032 | 0.3609 | 0.98993 | 0 | * | * | * | |||
Turkey | 0.83709 | 0.99853 | 0.15808 | 1 | 0.99182 | 0.38071 | 1 | 0.89312 | 1 | 1 | 0.664 | 1 | 0.99829 | 0 | * | * | * | * | * |
Bangladesh | 0.69744 | 0.4377 | 0.57085 | 0 | 0.68054 | 0.11114 | 0.58264 | 0.39575 | 0 | −0.2 | −0.23918 | 0 | 0.17909 | 0.87578 | 0 | ||||
Thailand | 0.70883 | 0.14103 | 0.66687 | 0.54345 | 0.35719 | 0.38266 | 0.66734 | 0.60324 | 0.54345 | −0.20999 | 0.10486 | 0.54345 | 0.00253 | 0.81736 | −0.17659 | 0 | * | ||
India | 0.52531 | 0.1565 | 0.51258 | 0.2865 | 0.31308 | 0.24204 | 0.48252 | 0.45213 | 0.2865 | −0.13015 | −0.00514 | 0.2865 | 0.05509 | 0.64584 | −0.22063 | −0.03022 | 0 | ||
China | −0.22709 | 0.99582 | −0.27778 | 0 | 0.98587 | −0.00703 | 1 | 0.52941 | 0 | 1 | 0.14286 | 0 | 0.99196 | 1 | 0.36842 | 0.61306 | 0.41187 | 0 | |
Brazil | 0.99471 | 0.33333 | 0.84762 | 1 | 0.80016 | 0.5857 | 1 | 0.7797 | 1 | 1 | 0.3617 | 1 | 0.66667 | 1 | 0.22103 | 0.04619 | 0.07859 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminisarteshnizi, M.; Moyo, N.A.G. Genetic and Haplotype Diversity of Clarias gariepinus (Burchell 1822) Based on Cytochrome c Oxidase I (COI) Gene. Hydrobiology 2024, 3, 337-349. https://doi.org/10.3390/hydrobiology3040021
Aminisarteshnizi M, Moyo NAG. Genetic and Haplotype Diversity of Clarias gariepinus (Burchell 1822) Based on Cytochrome c Oxidase I (COI) Gene. Hydrobiology. 2024; 3(4):337-349. https://doi.org/10.3390/hydrobiology3040021
Chicago/Turabian StyleAminisarteshnizi, Mehrnoush, and Ngonidzashe A. G. Moyo. 2024. "Genetic and Haplotype Diversity of Clarias gariepinus (Burchell 1822) Based on Cytochrome c Oxidase I (COI) Gene" Hydrobiology 3, no. 4: 337-349. https://doi.org/10.3390/hydrobiology3040021
APA StyleAminisarteshnizi, M., & Moyo, N. A. G. (2024). Genetic and Haplotype Diversity of Clarias gariepinus (Burchell 1822) Based on Cytochrome c Oxidase I (COI) Gene. Hydrobiology, 3(4), 337-349. https://doi.org/10.3390/hydrobiology3040021