Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review
Abstract
:1. Introduction
2. Manipulating Ruminants via Genetic Selection
3. Manipulation of the Rumen Microbiome
3.1. Rumen Microbiome
3.2. Manipulation of the Rumen Microbiome via Nutrigenomic Approaches
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumari, S.; Fagodiya, R.K.; Hiloidhari, M.; Dahiya, R.P.; Kumar, A. Methane Production and Estimation from Livestock Husbandry: A Mechanistic Understanding and Emerging Mitigation Options. Sci. Total Environ. 2020, 709, 136135. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse Gas Mitigation Potentials in the Livestock Sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- De Congio, G.F.S.; Bannink, A.; Mayorga Mogollón, O.L.; Jaurena, G.; Gonda, H.; Gere, J.I.; Cerón-Cucchi, M.E.; Ortiz-Chura, A.; Tieri, M.P.; Hernández, O.; et al. Enteric Methane Mitigation Strategies for Ruminant Livestock Systems in the Latin America and Caribbean Region: A Meta-Analysis. J. Clean. Prod. 2021, 312, 127693. [Google Scholar] [CrossRef]
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J.A. Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 2. Incorporating Methane Emissions into the Breeding Goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef]
- Pszczola, M.; Calus, M.P.L.; Strabel, T. Short Communication: Genetic Correlations between Methane and Milk Production, Conformation, and Functional Traits. J. Dairy Sci. 2019, 102, 5342–5346. [Google Scholar] [CrossRef]
- Ornelas, L.T.C.; Silva, D.C.; Tomich, T.R.; Campos, M.M.; Machado, F.S.; Ferreira, A.L.; Maurício, R.M.; Pereira, L.G.R. Differences in Methane Production, Yield and Intensity and Its Effects on Metabolism of Dairy Heifers. Sci. Total Environ. 2019, 689, 1133–1140. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal Methane Production: Associated Microorganisms and the Potential of Applying Hydrogen-Utilizing Bacteria for Mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Macit, M. Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives Towards a Cleaner Ecosystem. Waste Biomass Valor. 2021, 12, 4825–4834. [Google Scholar] [CrossRef]
- De Haas, Y.; Windig, J.J.; Calus, M.P.L.; Dijkstra, J.; de Haan, M.; Bannink, A.; Veerkamp, R.F. Genetic Parameters for Predicted Methane Production and Potential for Reducing Enteric Emissions through Genomic Selection. J. Dairy Sci. 2011, 94, 6122–6134. [Google Scholar] [CrossRef] [Green Version]
- De Mulder, T.; Peiren, N.; Vandaele, L.; Ruttink, T.; De Campeneere, S.; van de Wiele, T.; Goossens, K. Impact of Breed on the Rumen Microbial Community Composition and Methane Emission of Holstein Friesian and Belgian Blue Heifers. Livest. Sci. 2018, 207, 38–44. [Google Scholar] [CrossRef]
- Mercadante, M.E.Z.; de Melo Caliman, A.P.; Canesin, R.C.; Bonilha, S.F.M.; Berndt, A.; Frighetto, R.T.S.; Magnani, E.; Branco, R.H. Relationship between Residual Feed Intake and Enteric Methane Emission in Nellore Cattle. Rev. Bras. Zootec. 2015, 44, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Todd, R.W.; Altman, M.B.; Cole, N.A.; Waldrip, H.M. Methane Emissions from a Beef Cattle Feedyard during Winter and Summer on the Southern High Plains of Texas. J. Environ. Qual. 2014, 43, 1125–1130. [Google Scholar] [CrossRef]
- Pickering, N.K.; Oddy, V.H.; Basarab, J.; Cammack, K.; Hayes, B.; Hegarty, R.S.; Lassen, J.; McEwan, J.C.; Miller, S.; Pinares-Patino, C.S.; et al. Animal Board Invited Review: Genetic Possibilities to Reduce Enteric Methane Emissions from Ruminants. Animal 2015, 9, 1431–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelke, S.W.; Daş, G.; Derno, M.; Tuchscherer, A.; Wimmers, K.; Rychlik, M.; Kienberger, H.; Berg, W.; Kuhla, B.; Metges, C.C. Methane Prediction Based on Individual or Groups of Milk Fatty Acids for Dairy Cows Fed Rations with or without Linseed. J. Dairy Sci. 2019, 102, 1788–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, S.C.; Kelly, W.J.; Ronimus, R.S.; Wedlock, N.; Altermann, E.; Attwood, G.T. Genome Sequencing of Rumen Bacteria and Archaea and Its Application to Methane Mitigation Strategies. Animal 2013, 7, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombini, S.; Rota Graziosi, A.; Parma, P.; Iriti, M.; Vitalini, S.; Sarnataro, C.; Spanghero, M. Evaluation of Dietary Addition of 2 Essential Oils from Achillea moschata, or Their Components (Bornyl Acetate, Camphor, and Eucalyptol) on in Vitro Ruminal Fermentation and Microbial Community Composition. Anim. Nutr. 2021, 7, 224–231. [Google Scholar] [CrossRef]
- Niu, W.; He, Y.; Wang, H.; Xia, C.; Shi, H.; Cao, B.; Su, H. Effects of Leymus chinensis Replacement with Whole-Crop Wheat Hay on Blood Parameters, Fatty Acid Composition, and Microbiomes of Holstein Bulls. J. Dairy Sci. 2018, 101, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.Y.; Dijkstra, J.; Bannink, A.; van Gastelen, S.; France, J.; Kebreab, E. Antimethanogenic Effects of Nitrate Supplementation in Cattle: A Meta-Analysis. J. Dairy Sci. 2020, 103, 11375–11385. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Paschoaloto, J.R.; Ezequiel, J.M.B.; da Silva, D.A.V.; Almeida, M.T.C. Meta-Analysis of the Effects of Essential Oil as an Alternative to Monensin in Diets for Beef Cattle. Vet. J. 2021, 272, 105659. [Google Scholar] [CrossRef]
- McGinn, S.M.; Beauchemin, K.A.; Coates, T.; Colombatto, D. Methane Emissions from Beef Cattle: Effects of Monensin, Sunflower Oil, Enzymes, Yeast, and Fumaric Acid. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef]
- Latham, E.A.; Pinchak, W.E.; Trachsel, J.; Allen, H.K.; Callaway, T.R.; Nisbet, D.J.; Anderson, R.C. Paenibacillus 79R4, a Potential Rumen Probiotic to Enhance Nitrite Detoxification and Methane Mitigation in Nitrate-Treated Ruminants. Sci. Total Environ. 2019, 671, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.N.S.; Ghedini, C.P.; Paschoaloto, J.R.; da Silva, D.A.V.; Coelho, L.M.; Almeida Junior, G.A.; Ezequiel, J.M.B.; Machado Neto, O.R.; Almeida, M.T.C. Effects of Tannins Supplementation to Sheep Diets on Their Performance, Carcass Parameters and Meat Fatty Acid Profile: A Meta-Analysis Study. Small Rumin. Res. 2022, 206, 106585. [Google Scholar] [CrossRef]
- Thompson, L.R.; Rowntree, J.E. INVITED REVIEW: Methane Sources, Quantification, and Mitigation in Grazing Beef Systems. Appl. Anim. Sci. 2020, 36, 556–573. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract. Front. Vet. Sci. 2015, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Janssen, P.H.; Luo, D.; Wedlock, D.N. Vaccination of Cattle with a Methanogen Protein Produces Specific Antibodies in the Saliva Which Are Stable in the Rumen. Vet. Immunol. Immunopathol. 2015, 164, 201–207. [Google Scholar] [CrossRef]
- Wenner, B.A.; Wagner, B.K.; St-Pierre, N.R.; Yu, Z.T.; Firkins, J.L. Inhibition of Methanogenesis by Nitrate, with or without Defaunation, in Continuous Culture. J. Dairy Sci. 2020, 103, 7124–7140. [Google Scholar] [CrossRef]
- Lassen, J.; Difford, G.F. Review: Genetic and Genomic Selection as a Methane Mitigation Strategy in Dairy Cattle. Animal 2020, 14, s473–s483. [Google Scholar] [CrossRef]
- de Haas, Y.; Pszczola, M.; Soyeurt, H.; Wall, E.; Lassen, J. Invited Review: Phenotypes to Genetically Reduce Greenhouse Gas Emissions in Dairying. J. Dairy Sci. 2017, 100, 855–870. [Google Scholar] [CrossRef] [Green Version]
- Grainger, C.; Clarke, T.; McGinn, S.M.; Auldist, M.J.; Beauchemin, K.A.; Hannah, M.C.; Waghorn, G.C.; Clark, H.; Eckard, R.J. Methane Emissions from Dairy Cows Measured Using the Sulfur Hexafluoride (SF6) Tracer and Chamber Techniques. J. Dairy Sci. 2007, 90, 2755–2766. [Google Scholar] [CrossRef] [Green Version]
- Ricci, P.; Rooke, J.A.; Nevison, I.; Waterhouse, A. Methane Emissions from Beef and Dairy Cattle: Quantifying the Effect of Physiological Stage and Diet Characteristics. J. Anim. Sci. 2013, 91, 5379–5389. [Google Scholar] [CrossRef]
- Rischewski, J.; Bielak, A.; Nürnberg, G.; Derno, M.; Kuhla, B. Rapid Communication: Ranking Dairy Cows for Methane Emissions Measured Using Respiration Chamber or GreenFeed Techniques during Early, Peak, and Late Lactation. J. Anim. Sci. 2017, 95, 3154–3159. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-Farm Methane Measurements during Milking Correlate with Total Methane Production by Individual Dairy Cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szalanski, M.; Kristensen, T.; Difford, G.; Lassen, J.; Buitenhuis, A.J.; Pszczola, M.; Løvendahl, P. Enteric Methane Emission from Jersey Cows during the Spring Transition from Indoor Feeding to Grazing. J. Dairy Sci. 2019, 102, 6319–6329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of Noninvasive Breath Methane Measurements Using Fourier Transform Infrared Methods on Individual Cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herd, R.M.; Arthur, P.F.; Donoghue, K.A.; Bird, S.H.; Bird-Gardiner, T.; Hegarty, R.S. Measures of Methane Production and Their Phenotypic Relationships with Dry Matter Intake, Growth, and Body Composition Traits in Beef Cattle. J. Anim. Sci. 2014, 92, 5267–5274. [Google Scholar] [CrossRef]
- Jonker, A.; Hickey, S.M.; Rowe, S.J.; Janssen, P.H.; Shackell, G.H.; Elmes, S.; Bain, W.E.; Wing, J.; Greer, G.J.; Bryson, B.; et al. Genetic Parameters of Methane Emissions Determined Using Portable Accumulation Chambers in Lambs and Ewes Grazing Pasture and Genetic Correlations with Emissions Determined in Respiration Chambers1. J. Anim. Sci. 2018, 96, 3031–3042. [Google Scholar] [CrossRef]
- Denninger, T.M.; Schwarm, A.; Dohme-Meier, F.; Münger, A.; Bapst, B.; Wegmann, S.; Grandl, F.; Vanlierde, A.; Sorg, D.; Ortmann, S.; et al. Accuracy of Methane Emissions Predicted from Milk Mid-Infrared Spectra and Measured by Laser Methane Detectors in Brown Swiss Dairy Cows. J. Dairy Sci. 2020, 103, 2024–2039. [Google Scholar] [CrossRef]
- Tomkins, N.W.; McGinn, S.M.; Turner, D.A.; Charmley, E. Comparison of Open-Circuit Respiration Chambers with a Micrometeorological Method for Determining Methane Emissions from Beef Cattle Grazing a Tropical Pasture. Anim. Feed Sci. Technol. 2011, 166–167, 240–247. [Google Scholar] [CrossRef]
- Denninger, T.M.; Dohme-Meier, F.; Eggerschwiler, L.; Vanlierde, A.; Grandl, F.; Gredler, B.; Kreuzer, M.; Schwarm, A.; Münger, A. Persistence of Differences between Dairy Cows Categorized as Low or High Methane Emitters, as Estimated from Milk Mid-Infrared Spectra and Measured by GreenFeed. J. Dairy Sci. 2019, 102, 11751–11765. [Google Scholar] [CrossRef] [Green Version]
- Jonker, A.; Molano, G.; Antwi, C.; Waghorn, G.C. Enteric Methane and Carbon Dioxide Emissions Measured Using Respiration Chambers, the Sulfur Hexafluoride Tracer Technique, and a Greenfeed Head-Chamber System from Beef Heifers Fed Alfalfa Silage at Three Allowances and Four Feeding Frequencies. J. Anim. Sci. 2016, 94, 4326–4337. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; de Haas, Y.; Hayes, B.J.; Veerkamp, R.F.; Khansefid, M.; Donoghue, K.A.; Arthur, P.F.; Pryce, J.E. Genomewide Association Study of Methane Emissions in Angus Beef Cattle with Validation in Dairy Cattle. J. Anim. Sci. 2016, 94, 4151–4166. [Google Scholar] [CrossRef]
- López-Paredes, J.; Goiri, I.; Atxaerandio, R.; García-Rodríguez, A.; Ugarte, E.; Jiménez-Montero, J.A.; Alenda, R.; González-Recio, O. Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 1. Genetic Parameters of Direct Methane Using Noninvasive Methods and Proxies of Methane. J. Dairy Sci. 2020, 103, 7199–7209. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J.; Huhtanen, P. Between-Cow Variation in Digestion and Rumen Fermentation Variables Associated with Methane Production. J. Dairy Sci. 2017, 100, 4409–4424. [Google Scholar] [CrossRef]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. SPECIAL TOPICS-Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: II. A Review of Manure Management Mitigation Options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.M.; Nguyen, T.T.T.; Abdelsayed, M.; Moate, P.J.; Williams, S.R.O.; Chud, T.C.S.; Schenkel, F.S.; Goddard, M.E.; van den Berg, I.; Cocks, B.G.; et al. Genetic Parameters for Methane Emission Traits in Australian Dairy Cows. J. Dairy Sci. 2021, 104, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Difford, G.F.; Olijhoek, D.W.; Hellwing, A.L.F.; Lund, P.; Bjerring, M.A.; de Haas, Y.; Lassen, J.; Løvendahl, P. Ranking Cows’ Methane Emissions under Commercial Conditions with Sniffers versus Respiration Chambers. Acta Agric. Scand. A Anim. Sci. 2018, 68, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Brask, M.; Weisbjerg, M.R.; Hellwing, A.L.F.; Bannink, A.; Lund, P. Methane Production and Diurnal Variation Measured in Dairy Cows and Predicted from Fermentation Pattern and Nutrient or Carbon Flow. Animal 2015, 9, 1795–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.L.; Goopy, J.P.; Hegarty, R.S.; Oddy, V.H.; Thompson, A.N.; Toovey, A.F.; Macleay, C.A.; Briegal, J.R.; Woodgate, R.T.; Donaldson, A.J.; et al. Genetic and Environmental Variation in Methane Emissions of Sheep at Pasture. J. Anim. Sci. 2014, 92, 4349–4363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; Ganesh, S.; McEwan, J.C.; Janssen, P.H. Two Different Bacterial Community Types Are Linked with the Low-Methane Emission Trait in Sheep. PLoS ONE 2014, 9, e0103171. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Society of Animal Production Online Archive. Available online: https://www.nzsap.org/ (accessed on 28 September 2022).
- Xiang, R.; McNally, J.; Rowe, S.; Jonker, A.; Pinares-Patino, C.S.; Oddy, V.H.; Vercoe, P.E.; McEwan, J.C.; Dalrymple, B.P. Gene Network Analysis Identifies Rumen Epithelial Cell Proliferation, Differentiation and Metabolic Pathways Perturbed by Diet and Correlated with Methane Production. Sci. Rep. 2016, 6, 39022. [Google Scholar] [CrossRef]
- Xiang, R.; Dalrymple, B.P. Across-Experiment Transcriptomics of Sheep Rumen Identifies Expression of Lipid / Oxo-Acid Metabolism and Muscle Cell Junction Genes Associated With Variation in Methane-Related Phenotypes Differences Between the Two. Front. Genet. 2018, 9, 330. [Google Scholar] [CrossRef]
- Swainson, N.; Muetzel, S.; Clark, H. Updated Predictions of Enteric Methane Emissions from Sheep Suitable for Use in the New Zealand National Greenhouse Gas Inventory. Anim. Prod. Sci. 2018, 58, 973–979. [Google Scholar] [CrossRef]
- Renand, G.; Decruyenaere, V.; Maupetit, D.; Dozias, D. Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed E Ffi Ciency. Animals 2019, 3, 1–17. [Google Scholar]
- Andersen, T.O.; Kunath, B.J.; Hagen, L.H.; Arntzen, M.; Pope, P.B. Rumen Metaproteomics: Closer to Linking Rumen Microbial Function to Animal Productivity Traits. Methods 2021, 186, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.; Salama, A.A.K.; Vitor, A.C.M.; Argüello, A.; Moncau, C.T.; Santos, E.M.; Caja, G.; de Oliveira, J.S.; Balieiro, J.C.C.; Hernández-Castellano, L.E.; et al. The Application of Omics in Ruminant Production: A Review in the Tropical and Sub-Tropical Animal Production Context. J. Proteom. 2020, 227, 103905. [Google Scholar] [CrossRef]
- Guzman, C.E.; Bereza-Malcolm, L.T.; De Groef, B.; Franks, A.E. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours. PLoS ONE 2015, 10, e0133048. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Ruiz, D.R.; Abecia, L.; Newbold, C.J. Manipulating Rumen Microbiome and Fermentation through Interventions during Early Life: A Review. Front. Microbiol. 2015, 6, 1133. [Google Scholar] [CrossRef] [Green Version]
- Rey, M.; Enjalbert, F.; Monteils, V. Establishment of Ruminal Enzyme Activities and Fermentation Capacity in Dairy Calves from Birth through Weaning. J. Dairy Sci. 2012, 95, 1500–1512. [Google Scholar] [CrossRef]
- Pitta, D.; Indugu, N.; Narayan, K.; Hennessy, M. Symposium Review: Understanding the Role of the Rumen Microbiome in Enteric Methane Mitigation and Productivity in Dairy Cows. J. Dairy Sci. 2022, 105, 8569–8585. [Google Scholar] [CrossRef]
- Friedman, N.; Jami, E.; Mizrahi, I. Compositional and Functional Dynamics of the Bovine Rumen Methanogenic Community across Different Developmental Stages. Environ. Microbiol. 2017, 19, 3365–3373. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.A.; ul Hassan, F.; Rehman, M.S.; Huws, S.A.; Cheng, Y.; Din, A.U. Gut Microbiome Colonization and Development in Neonatal Ruminants: Strategies, Prospects, and Opportunities. Anim. Nutr. 2021, 7, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Palma-Hidalgo, J.M.; Jiménez, E.; Popova, M.; Morgavi, D.P.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Belanche, A. Inoculation with Rumen Fluid in Early Life Accelerates the Rumen Microbial Development and Favours the Weaning Process in Goats. Anim. Microbiome 2021, 3, 11. [Google Scholar] [CrossRef]
- Weimer, P.J. Redundancy, Resilience, and Host Specificity of the Ruminal Microbiota: Implications for Engineering Improved Ruminal Fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Abecia, L.; Angarita, E.; Aravena, P.; Arenas, G.N.; et al. Rumen Microbial Community Composition Varies with Diet and Host, but a Core Microbiome Is Found across a Wide Geographical Range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [Green Version]
- Paillard, D.; McKain, N.; Chaudhary, L.C.; Walker, N.D.; Pizette, F.; Koppova, I.; McEwan, N.R.; Kopečný, J.; Vercoe, P.E.; Louis, P.; et al. Relation between Phylogenetic Position, Lipid Metabolism and Butyrate Production by Different Butyrivibrio-like Bacteria from the Rumen. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2007, 91, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.; Gruninger, R. Control of Methanogenesis in Dairy Animals, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, ISBN 9780128187661. [Google Scholar]
- Sharifi, M.; Taghizadeh, A.; Hosseinkhani, A.; Palangi, V.; MacIt, M.; Salem, A.Z.M.; Elghndour, M.M.M.Y.; Abachi, S. Influence of Nitrate Supplementation on In-Vitro Methane Emission, Milk Production, Ruminal Fermentation, and Microbial Methanotrophs in Dairy Cows Fed at Two Forage Levels. Anim. Sci. 2022, 22, 1–22. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential Effects of Oilseed Supplements on Methane Production and Milk Fatty Acid Concentrations in Dairy Cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Wischer, G.; Boguhn, J.; Steingaß, H.; Schollenberger, M.; Hartung, K.; Rodehutscord, M. Effect of Monensin on in Vitro Fermentation of Silages and Microbial Protein Synthesis. Arch. Anim. Nutr. 2013, 67, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Hydrogen Production by Fermentative Consortia. Renew. Sustain. Energy Rev. 2009, 13, 1000–1013. [Google Scholar] [CrossRef]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential Effects of Monensin and a Blend of Essential Oils on Rumen Microbiota Composition of Transition Dairy Cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammi, L.M.E.; Guadagnini, M.; Mechor, G.; Cainzos, J.M.; Fusaro, I.; Palmonari, A.; Formigoni, A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals 2021, 11, 1988. [Google Scholar] [CrossRef]
- Ipharraguerre, I.R.; Clark, J.H. Usefulness of Ionophores for Lactating Dairy Cows: A Review. Anim. Feed Sci. Technol. 2003, 106, 39–57. [Google Scholar] [CrossRef]
- Saborío-Montero, A.; Gutiérrez-Rivas, M.; Goiri, I.; Atxaerandio, R.; García-Rodriguez, A.; López-Paredes, J.; Jiménez-Montero, J.A.; González-Recio, O. Rumen Eukaryotes Are the Main Phenotypic Risk Factors for Larger Methane Emissions in Dairy Cattle. Livest. Sci. 2022, 263, 105023. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, X.; Zhao, Y.; Jiang, L.; Wang, H.; Hua, D.; Zhang, F.; Wang, Y.; Liu, J.; Yao, J.; et al. Dietary Supplementation with Inulin Improves Lactation Performance and Serum Lipids by Regulating the Rumen Microbiome and Metabolome in Dairy Cows. Anim. Nutr. 2021, 7, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Gong, J.M.; Zhou, S.; Liu, C.J.; Qu, M.R. The Effect of Starch, Inulin, and Degradable Protein on Ruminal Fermentation and Microbial Growth in Rumen Simulation Technique. Ital. J. Anim. Sci. 2014, 13, 189–195. [Google Scholar] [CrossRef]
- Tian, K.; Liu, J.; Sun, Y.; Wu, Y.; Chen, J.; Zhang, R.; He, T.; Dong, G. Effects of Dietary Supplementation of Inulin on Rumen Fermentation and Bacterial Microbiota, Inflammatory Response and Growth Performance in Finishing Beef Steers Fed High or Low-Concentrate Diet. Anim. Feed Sci. Technol. 2019, 258, 114299. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of Polyunsaturated Fatty Acids and Their Toxicity to the Microflora of the Rumen. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.; Chaudhary, L.C.; Bestwick, C.S.; Richardson, A.J.; McKain, N.; Larson, T.R.; Graham, I.A.; Wallace, R.J. Toxicity of Unsaturated Fatty Acids to the Biohydrogenating Ruminal Bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick, M.; Zhou, M.; Guan, L.L.; Oba, M. Effects of Medium-Chain Fatty Acid Supplementation on Performance and Rumen Fermentation of Lactating Holstein Dairy Cows. Animal 2022, 16, 100491. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A.; Bertilsson, J. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Pandey, D.; Helene, H.; Dhakal, R.; Aryal, N.; Prakash, S.; Sapkota, R.; Olaf, M.; Novoa-garrido, M.; Khanal, P. Interspecies and Seasonal Variations in Macroalgae from the Nordic Region: Chemical Composition and Impacts on Rumen Fermentation and Microbiome Assembly. J. Clean. Prod. 2022, 363, 132456. [Google Scholar] [CrossRef]
- Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.A.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Watson, M.; Roehe, R. The Rumen Microbial Metagenome Associated with High Methane Production in Cattle. BMC Genom. 2015, 16, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Sanabria, E.; Goonewardene, L.A.; Wang, Z.; Durunna, O.N.; Moore, S.S.; Guan, L.L. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle. Appl. Environ. Microbiol. 2012, 78, 1203–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, M.Y.; Sun, H.Z.; Wu, X.H.; Guan, L.L.; Liu, J.X. Assessment of Rumen Bacteria in Dairy Cows with Varied Milk Protein Yield. J. Dairy Sci. 2019, 102, 5031–5041. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Cancino-Padilla, N.; Romero, J.; Garnsworthy, P.C. Quantitative Analysis of Ruminal Bacterial Populations Involved in Lipid Metabolism in Dairy Cows Fed Different Vegetable Oils. Animal 2016, 10, 1821–1828. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Zhang, X.M.; Smith, M.L.; Kung, L.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Application of 3-Nitrooxypropanol and Canola Oil to Mitigate Enteric Methane Emissions of Beef Cattle Results in Distinctly Different Effects on the Rumen Microbial Community. Anim. Microbiome 2022, 4, 35. [Google Scholar] [CrossRef]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean Oil and Linseed Oil Supplementation Affect Profiles of Ruminal Microorganisms in Dairy Cows. Animal 2009, 3, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Wu, J.; Lang, X.; Liu, L.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effects of Oregano Essential Oil on in Vitro Ruminal Fermentation, Methane Production, and Ruminal Microbial Community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited Review: Plant Polyphenols and Rumen Microbiota Responsible for Fatty Acid Biohydrogenation, Fiber Digestion, and Methane Emission: Experimental Evidence and Methodological Approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Pitta, D.W.; Pinchak, W.E.; Dowd, S.; Dorton, K.; Yoon, I.; Min, B.R.; Fulford, J.D.; Wickersham, T.A.; Malinowski, D.P. Longitudinal Shifts in Bacterial Diversity and Fermentation Pattern in the Rumen of Steers Grazing Wheat Pasture. Anaerobe 2014, 30, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.Y.; Qi, W.P.; Zhang, T.; Zhang, J.Y.; Mao, S.Y. Gene Function Adjustment for Carbohydrate Metabolism and Enrichment of Rumen Microbiota with Antibiotic Resistance Genes during Subacute Rumen Acidosis Induced by a High-Grain Diet in Lactating Dairy Cows. J. Dairy Sci. 2021, 104, 2087–2105. [Google Scholar] [CrossRef] [PubMed]
- Rico, J.L.; Reardon, K.F.; de Long, S.K. Inoculum Microbiome Composition Impacts Fatty Acid Product Profile from Cellulosic Feedstock. Bioresour. Technol. 2021, 323, 124532. [Google Scholar] [CrossRef]
- Suen, G.; Weimer, P.J.; Stevenson, D.M.; Aylward, F.O.; Boyum, J.; Deneke, J.; Drinkwater, C.; Ivanova, N.N.; Mikhailova, N.; Chertkov, O.; et al. The Complete Genome Sequence of Fibrobacter Succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist. PLoS ONE 2011, 6, e0018814. [Google Scholar] [CrossRef]
- Castells, L.; Bach, A.; Aris, A.; Terré, M. Effects of Forage Provision to Young Calves on Rumen Fermentation and Development of the Gastrointestinal Tract. J. Dairy Sci. 2013, 96, 5226–5236. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Nagata, R.; Ohtani, N.; Ichijo, T.; Ikuta, K.; Sato, S. Effects of Dietary Forage and Calf Starter Diet on Ruminal PH and Bacteria in Holstein Calves during Weaning Transition. Front. Microbiol. 2016, 7, 1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Wang, J.; Hou, Q.; Wang, Y.; Hu, Z.; Shi, K.; Yan, Z.; Wang, Z. Effect of Hay Supplementation Timing on Rumen Microbiota in Suckling Calves. Microbiologyopen 2018, 7, 430. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the Bovine Rumen Bacterial Community from Birth to Adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
Methods | Animal | Breed | Feed Intake | MeP | MeY | References |
---|---|---|---|---|---|---|
RC | Heifers | Hereford × Friesian | ad libitum (10.9–12.2 kg DM per day) | 265 | 24.5 | [40] |
Dairy cows | German Holstein (early lactation) | ad libitum TMR (grass silage, corn silage, barley straw, hay, concentrate, corn meal, canola seed meal, soybean meal, wheat, soybean oil) | 346.4 | 22.2 | [31] | |
Beef steers | Brahman (Bos indicus) and Belmont Red (Bos taurus x African Sanga) | Rhodes grass pasture (Chloris gayana) grazed | 114.3 | 30.1 | [38] | |
Lambs | Coopworth, Romney, Perendale, Texel, and compos- ite breeds | ad libitum pasture allowance | 24 | 16 | [36] | |
PAC | Lambs | Coopworth, Romney, Perendale, Texel, and compos- ite breeds | ad libitum pasture allowance | 7.5 | - | [36] |
SF6 | Heifers | Hereford × Friesian | ad libitum (10.9–12.2 kg DM per day) | 272 | 22.4 | [40] |
Cows | Angus | fed with 88% DM, 14% CP, 67% DM digestibility, and ME content of 9 MJ/kg DM | 132.6 | 21.9 | [41] | |
Cows | Australian Holstein | fed a diet based on alfalfa supplemented with around 6 kg of crushed wheat per day | 110.5 | 17.5 | [41] | |
MHC | Heifers | Hereford × Friesian | ad libitum (10.9–12.2 kg DM per day) | 323 | 26.8 | [40] |
Dairy cows | German Holstein (early lactation) | ad libitum TMR (grass silage, corn silage, barley straw, hay, concentrate, corn meal, canola seed meal, soybean meal, wheat, soybeen oil) | 338.2 | 20.1 | [31] | |
MM | Beef steers | Brahman (Bos indicus) and Belmont Red (Bos taurus x African Sanga) | Rhodes grass pasture (Chloris gayana) grazed | 136.1 | 29.7 | [38] |
MIR | Dairy cows | Spanish Holstein | - | 182.5 | 38.0 | [42] |
Methods | Animal | Breed | GC | PC | References |
---|---|---|---|---|---|
RC | Lambs | Coopworth, Romney, Perendale, Texel, and composite breeds | BW-MeP: 0.83 BW-MeY: 0.02 | BW-MeP: 0.61 BW-MeY: 0.003 | [36] |
RC | Cattle | Angus | - | MeP-DMI: 0.65, MeY-DMI: −0.02 | [35] |
RC | Dairy cows | Holstein and Jersey 1 | MeP-DMI: 0.70, BW-MeP:0.54, ECM-MeP:0.66 | - | [46] |
RC | Dairy cows | Holstein and Jersey 2 | MeP-DMI: 0.49, BW-MeP:0.24, ECM-MeP:0.52 | - | [46] |
PAC | Lambs | Coopworth, Romney, Perendale, Texel, and composite breeds | BW-MeP: 0.59 | BW-MeP: 0.31 | [36] |
MIR | Dairy cows | Spanish Holstein | MeP-RT: −0.43, MeP-MY: 0.21, MeP-PY: 0.31, MeP-FY: 0.29 | MeP-MY: 0.05, MeP-PY: −0.03, MeP-FY: 0.00 | [4,42] |
SF6 | Cows | Holstein and Angus | MeP: DMI: 0.83, MeP-BW: 0.80, MeY-DMI: 0.08, MeY-BW: 0.05 | MeP: DMI: 0.70, MeP-BW: 0.67, MeY-DMI: −0.00, MeY-BW: 0.04 | [41] |
SF6 | Dairy cows | - | MeP-DMI: 0.42, MEY-DMI: −0.60 | MeP-DMI: 0.49, MEY-DMI: −0.27 | [45] |
Calculation | Heifers | Holstein-Friesian | - | MeP-FPCM: 0.26, MeP-DMI:0.99, MeP-RFI: 0.72 | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kader Esen, V.; Palangi, V.; Esen, S. Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review. Methane 2022, 1, 342-354. https://doi.org/10.3390/methane1040025
Kader Esen V, Palangi V, Esen S. Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review. Methane. 2022; 1(4):342-354. https://doi.org/10.3390/methane1040025
Chicago/Turabian StyleKader Esen, Vasfiye, Valiollah Palangi, and Selim Esen. 2022. "Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review" Methane 1, no. 4: 342-354. https://doi.org/10.3390/methane1040025
APA StyleKader Esen, V., Palangi, V., & Esen, S. (2022). Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review. Methane, 1(4), 342-354. https://doi.org/10.3390/methane1040025