Effect of Particle Size on the Biomethanation Kinetics of Mechanically Pretreated Sargassum spp. Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Biomass Pre-Treatment
2.3. Granulometric Analysis of Biomass
2.4. Anaerobic Digestion through Automatic Potential System Test II (AMPTS-II)
2.5. Mathematical Kinetic Model
2.6. Energy Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Biomass Characteristics Post-Pretreatment
3.2. Granulometric Analysis of Sargassum spp.
3.3. Effect of Particle Size on the Biomethane Production
3.4. Biomethanation Kinetics
3.5. Energy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 364, 83–87. [Google Scholar] [CrossRef]
- Trinanes, J.; Putman, N.F.; Goni, G.; Hu, C.; Wang, M. Monitoring pelagic Sargassum inundation potential for coastal communities. J. Oper. Oceanogr. 2021, 16, 48–59. [Google Scholar] [CrossRef]
- Robledo, D.; Vázquez-Delfín, E.; Freile-Pelegrín, Y.; Vásquez-Elizondo, R.M.; Qui-Minet, Z.N.; Salazar-Garibay, A. Challenges and Opportunities in Relation to Sargassum Events Along the Caribbean Sea. Front. Mar. Sci. 2021, 8, 699664. [Google Scholar] [CrossRef]
- Lopresto, C.G.; Paletta, R.; Filippelli, P.; Galluccio, L.; de la Rosa, C.; Amaro, E.; Jáuregui-Haza, U.; de Frias, J.A. Sargassum Invasion in the Caribbean: An Opportunity for Coastal Communities to Produce Bioenergy Based on Biorefinery—An Overview. Waste Biomass Valorization 2022, 13, 2769–2793. [Google Scholar] [CrossRef]
- Optical Oceanography Laboratory—College of Marine Science—University of South Florida. Available online: https://optics.marine.usf.edu/projects/saws.html (accessed on 29 November 2023).
- Balboa, E.M.; Moure, A.; Domínguez, H. Valorization of Sargassum muticum biomass according to the biorefinery concept. Mar. Drugs 2015, 13, 3745–3760. [Google Scholar] [CrossRef]
- Amador-Castro, F.; García-Cayuela, T.; Alper, H.S.; Rodriguez-Martinez, V.; Carrillo-Nieves, D. Valorization of pelagic sargassum biomass into sustainable applications: Current trends and challenges. J. Environ. Manag. 2021, 283, 112013. [Google Scholar] [CrossRef]
- Castro, Y.A.; Rodríguez, A.; Rivera, E. Biomethane production kinetics during the anaerobic co-digestion of Sargassum spp. and food waste using batch and fed-batch systems in Punta Cana, Dominican Republic. Mater. Renew. Sustain. Energy 2022, 11, 287–297. [Google Scholar] [CrossRef]
- Casallas-Ojeda, M.R.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Identification of Factors and Variables that Influence the Anaerobic Digestion of Municipal Biowaste and Food Waste. Waste Biomass Valorization 2021, 12, 2889–2904. [Google Scholar] [CrossRef]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef]
- Maneein, S.; Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 2018, 4, 100. [Google Scholar] [CrossRef]
- Izumi, K.; Okishio, Y.K.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, J.Y.; Gleisner, R.; Pan, X.J. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour. Technol. 2010, 101, 2782–2792. [Google Scholar] [CrossRef]
- Zhang, Y.; Banks, C.J. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag. 2013, 33, 297–307. [Google Scholar] [CrossRef]
- Milledge, J.J.; Harvey, P.J. Ensilage and anaerobic digestion of Sargassum muticum. J. Appl. Phycol. 2016, 28, 3021–3030. [Google Scholar] [CrossRef]
- Farghali, M.; AP, Y.; Mohamed, I.M.A.; Iwasaki, M.; Tangtaweewipat, S.; Ihara, I.; Sakai, R.; Umetsu, K. Thermophilic anaerobic digestion of Sargassum fulvellum macroalgae: Biomass valorization and biogas optimization under different pre-treatment conditions. J. Environ. Chem. Eng. 2021, 9, 106405. [Google Scholar] [CrossRef]
- Hajji, A.; Rhachi, M. The influence of particle size on the performance of anaerobic digestion of municipal solid waste. Energy Procedia 2013, 36, 515–520. [Google Scholar] [CrossRef]
- Mshandete, A.; Björnsson, L.; Kivaisi, A.K.; Rubindamayugi, M.S.T.; Mattiasson, B. Effect of particle size on biogas yield from sisal fibre waste. Renew. Energy 2006, 31, 2385–2392. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Nrel, J.W. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; National Renewable Energy Laboratory: Golden, CO, USA, 2008; pp. 3–5. [Google Scholar]
- Sargassum, M.; Paletta, R.; Candamano, S.; Filippelli, P.; Lopresto, C.G. Influence of Fe2O3 Nanoparticles on the Anaerobic Digestion of Macroalgae Sargassum spp. Processes 2023, 11, 1016. [Google Scholar]
- Li, C.; Champagne, P.; Anderson, B.C. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresour. Technol. 2011, 102, 9471–9480. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 2004, 26, 389–399. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Feng, R.; Malik, A.; Khan, S.Z.; Shi, Y.; Bhutta, A.J.; Shah, A.H. Combining microwave pretreatment with iron oxide nanoparticles enhanced biogas and hydrogen yield from green algae. Processes 2019, 7, 24. [Google Scholar] [CrossRef]
- Ap, Y.; Farghali, M.; Mohamed, I.M.A.; Iwasaki, M.; Tangtaweewipat, S.; Ihara, I.; Sakai, R.; Umetsu, K. Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: Influences of mechanical, chemical, and biological pretreatments. Biochem. Eng. J. 2021, 175, 108140. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Furlong, E.B. Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Bioresour. Technol. 2012, 123, 36–41. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef]
- Montingelli, M.E.; Benyounis, K.Y.; Quilty, B.; Stokes, J.; Olabi, A.G. Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production. Energy 2017, 118, 1079–1089. [Google Scholar] [CrossRef]
- Pastare, L.; Aleksandrovs, I.; Lauka, D.; Romagnoli, F. Mechanical Pre-treatment Effect on Biological Methane Potential from Marine Macro Algae: Results from Batch Tests of Fucus Vesiculosus. Energy Procedia 2016, 95, 351–357. [Google Scholar] [CrossRef]
- Vanegas, C.; Bartlett, J. Anaerobic digestion of laminaria digitata: The effect of temperature on biogas production and composition. Waste Biomass Valorization 2013, 4, 509–515. [Google Scholar] [CrossRef]
- Zhang, Y.; Alam, M.A.; Kong, X.; Wang, Z.; Li, L.; Sun, Y.; Yuan, Z. Effect of salinity on the microbial community and performance on anaerobic digestion of marine macroalgae. J. Chem. Technol. Biotechnol. 2017, 92, 2392–2399. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Heiske, S. Anaerobic digestion of macroalgae: Methane potentials, pre-treatment, inhibition and co-digestion. Water Sci. Technol. 2011, 64, 1723–1729. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour. Technol. 2011, 102, 2595–2604. [Google Scholar] [CrossRef]
Site and Year of Collection | Particle Size | Volatile Solids (%) | Ash Content (%) | References |
---|---|---|---|---|
Punta Cana (2019) | 107 µm | 46.47 | 29.69 | This work |
Punta Cana (2019) | 505 µm | 50.52 | 30.87 | This work |
Indonesia (2021) | 106 µm–4.75 mm | 46.14 | 35.05 | [24] |
Indonesia (2021) | 75–850 µm | 55.83 | 31.72 | [24] |
Granulometric Analysis | ||||
---|---|---|---|---|
Pretreatment | Span [-] | dSV [µm] | dV [µm] | Methane Yield (NmL/gVS) |
Chopped (S.1) | - | - | 50,000.0 ± 0.5 | 17.17 ± 2.14 |
Crushed (S.2) | 2.088 | 86.0 ± 0.1 | 505.0 ± 0.1 | 79.68 ± 2.77 |
Milled (S.3) | 7.730 | 15.0 ± 0.1 | 107.0 ± 0.1 | 65.08 ± 2.18 |
Sample | Temperature (°C) | Time (days) | Pretreatment | Methane Yield (LCH4kgVS−1) | References |
---|---|---|---|---|---|
Macroalgae | |||||
Ascophyllum nodosum | 38 | 14 | Cutting | 169 | [27] |
Fucus vesiculosus | 25 | Unwashed, chopping | 120 | [28] | |
Fucus vesiculosus | 25 | Washed, chopping | 134 | [28] | |
Laminaria digitata | 20 | 54 | Drying (75 °C), milling | 111 | [29] |
Laminaria Japonica | 35 | 75 | Washing, drying (60 °C), milling | 267.5 | [30] |
Ulva lactuca | 53 | 34 | Washing, chopping | 152 | [31] |
Ulva lactuca | 55 | 42 | Chopping | 174 | [32] |
Other biomass | |||||
Municipal solid waste | 40 | 21 | Particles size reduction (10 mm in diameter) | 818 (biogas) | [17] |
Municipal solid waste | 40 | 21 | Particles size reduction (100 mm in diameter) | 654 (biogas) | [17] |
Sisal fibre waste | 33 | 65 | Grinding (particle size 2 mm) | 216 | [12] |
Sisal fibre waste | 33 | 65 | Grinding (particle size 5 mm) | 205 | [12] |
Sisal fibre waste | 33 | 65 | Grinding (particle size 10 mm) | 203 | [12] |
Sisal fibre waste | 33 | 65 | Grinding (particle size 50 mm) | 192 | [12] |
Sisal fibre waste | 33 | 65 | Grinding (particle size 100 mm) | 178 | [12] |
Pretreatment | A (NmL/gVS) | k (Day−1) | R2 |
---|---|---|---|
Chopped (S.1) | 18.919 | 0.107 | 0.951 |
Crushed (S.2) | 160.529 | 0.025 | 0.982 |
Milled (S.3) | 167.248 | 0.018 | 0.981 |
Pretreatment | A (NmL/gVS) | u (NmL/gVS.Day) | m (Day) | R2 |
---|---|---|---|---|
Chopped (S.1) | 17.677 a | 1.75 a | 1.57 | 0.988 |
Crushed (S.2) | 86.085 b | 4.495 b | 2.315 | 0.996 |
Milled (S.3) | 72.823 c | 3.526 c | 2.573 | 0.993 |
Pre-Treatment | BMP (Nm3/t) | Ep (kWh) | Ec (kWh) | Ed = Ep − Ec |
---|---|---|---|---|
Chopped (S.1) | 17.17 | 190.07 | - | 190.07 |
Crushed (S.2) | 79.68 | 882.06 | 19.8 | 862.26 |
Milled (S.3) | 65.08 | 720.43 | 39.6 | 680.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paletta, R.; Girimonte, R.; Castro, Y.A.; De Frias, J.A.; Calabrò, V. Effect of Particle Size on the Biomethanation Kinetics of Mechanically Pretreated Sargassum spp. Biomass. Methane 2024, 3, 160-171. https://doi.org/10.3390/methane3010010
Paletta R, Girimonte R, Castro YA, De Frias JA, Calabrò V. Effect of Particle Size on the Biomethanation Kinetics of Mechanically Pretreated Sargassum spp. Biomass. Methane. 2024; 3(1):160-171. https://doi.org/10.3390/methane3010010
Chicago/Turabian StylePaletta, Rosy, Rossella Girimonte, Yessica A. Castro, Jose Atilio De Frias, and Vincenza Calabrò. 2024. "Effect of Particle Size on the Biomethanation Kinetics of Mechanically Pretreated Sargassum spp. Biomass" Methane 3, no. 1: 160-171. https://doi.org/10.3390/methane3010010
APA StylePaletta, R., Girimonte, R., Castro, Y. A., De Frias, J. A., & Calabrò, V. (2024). Effect of Particle Size on the Biomethanation Kinetics of Mechanically Pretreated Sargassum spp. Biomass. Methane, 3(1), 160-171. https://doi.org/10.3390/methane3010010