Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming
Abstract
:1. Introduction
2. DRM Reaction Mechanism and Deactivation Mechanism
2.1. Reaction Mechanism
2.2. Catalyst Deactivation Mechanism
3. Regulation of Carbon Deposition on Ni-Based DRM Catalysts
3.1. Regulation of Active Metals
3.1.1. Ni Configuration
3.1.2. Ni Particle Size
3.1.3. Second Active Metal
3.2. Regulation of Supports
3.2.1. Support Structure
3.2.2. Acidity and Alkalinity of the Support Surface
3.2.3. Support Defects
3.2.4. New Catalyst Support
3.3. Interface Structure Control
3.4. Special Structure Design
3.4.1. Reverse Metal-on-Oxide
3.4.2. Encapsulated Structure
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, C.; Zhao, G.; Shi, X.-R.; Chen, P.; Liu, Y.; Lu, Y. Oxygen-deficient metal oxides supported nano-intermetallic InNi3C0.5 toward efficient CO2 hydrogenation to methanol. Sci. Adv. 2021, 7, eabi6012. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Zhao, G.; Shi, X.-R.; Nie, Q.; Liu, Y.; Lu, Y. Electronic modulation of InNi3C0.5/Fe3O4 by support precursor toward efficient CO2 hydrogenation to methanol. Appl. Catal. B 2022, 316, 121699. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, G.; Meng, C.; Chen, P.; Shi, X.-R.; Lu, Y. Superb Ni-foam-structured nano-intermetallic InNi3C0.5 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chem. Eng. J. 2021, 426, 130857. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, G.; Shi, X.-R.; Zhu, J.; Ding, J.; Lu, Y. Nano-Intermetallic InNi3C0.5 Compound Discovered as a Superior Catalyst for CO2 Reutilization. iScience 2019, 17, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, Z.; Kong, X.; Zhang, X.; Tan, L.; Guo, H.; Li, C.-J. One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire. Nano Res. 2023, 16, 6512–6516. [Google Scholar] [CrossRef]
- Zhang, X.; Witte, J.; Schildhauer, T.; Bauer, C. Life cycle assessment of power-to-gas with biogas as the carbon source. Sustain. Energy Fuels 2020, 4, 1427–1436. [Google Scholar] [CrossRef]
- Palmer, C.; Upham, D.C.; Smart, S.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 2020, 3, 83–89. [Google Scholar] [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.; Saw, E.T. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Sheng, K.; Luan, D.; Jiang, H.; Zeng, F.; Wei, B.; Pang, F.; Ge, J. NixCoy Nanocatalyst Supported by ZrO2 Hollow Sphere for Dry Reforming of Methane: Synergetic Catalysis by Ni and Co in Alloy. ACS Appl. Mater. Interfaces 2019, 11, 24078–24087. [Google Scholar] [CrossRef]
- Yu, Y.-X.; Yang, J.; Zhu, K.-K.; Sui, Z.-J.; Chen, D.; Zhu, Y.-A.; Zhou, X.-G. High-Throughput Screening of Alloy Catalysts for Dry Methane Reforming. ACS Catal. 2021, 11, 8881–8894. [Google Scholar] [CrossRef]
- Dou, J.; Zhang, R.; Hao, X.; Bao, Z.; Wu, T.; Wang, B.; Yu, F. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Appl. Catal. B 2019, 254, 612–623. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Cao, M.; Li, S.; Song, Z.; Qiu, L.; Yu, F.; Li, R.; Yan, X. Structural evolution of robust Ni3Fe1 alloy on Al2O3 in dry reforming of methane: Effect of iron-surplus strategy from Ni1Fe1 to Ni3Fe1. Appl. Catal. B 2023, 331, 122669. [Google Scholar] [CrossRef]
- Li, J.; Croiset, E.; Ricardez-Sandoval, L. Effect of Metal–Support Interface During CH4 and H2 Dissociation on Ni/γ-Al2O3: A Density Functional Theory Study. J. Phys. Chem. C 2013, 117, 16907–16920. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Jiang, F.; Xu, Y.; Liu, B.; Liu, X. Insight into the anti-coking ability of NiM/SiO2 (M=ZrO2, Ru) catalyst for dry reforming of CH4 to syngas. Int. J. Hydrogen Energy 2022, 47, 2268–2278. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, Y.; Wang, S.; Zhao, Q.; Mao, D.; Hu, C. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. ACS Catal. 2018, 8, 6495–6506. [Google Scholar] [CrossRef]
- Köpfle, N.; Götsch, T.; Grünbacher, M.; Carbonio, E.A.; Hävecker, M.; Knop-Gericke, A.; Schlicker, L.; Doran, A.; Kober, D.; Gurlo, A.; et al. Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming. Angew. Chem. Int. Ed. 2018, 57, 14613–14618. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xiang, Y.; Chen, W.; Wu, S.; Zhu, Z.-Z.; Cao, X. SiFeN6-graphene: A promising dual-atom catalyst for enhanced CO2-to-CH4 conversion. Appl. Surf. Sci. 2024, 643, 158724. [Google Scholar] [CrossRef]
- Wang, P.; Shi, X.-R.; Zhang, Y.; Wei, M. The influence of Co nucleation in Co-Ni single atom alloy on low-temperature methane dry reforming with DFT simulations and microkinetic modeling. Mol. Catal. 2023, 549, 113515. [Google Scholar] [CrossRef]
- Deng, J.; Gao, M.; Hasegawa, J.; Zhang, X.; Wang, A.; Chen, A.; Zhang, D. Unravelling the Anomalous Coking Resistance over Boron Nitride-Supported Ni Catalysts for Dry Reforming of Methane. CCS Chem. 2023, 5, 2111–2124. [Google Scholar] [CrossRef]
- Chen, S.; Zaffran, J.; Yang, B. Descriptor Design in the Computational Screening of Ni-Based Catalysts with Balanced Activity and Stability for Dry Reforming of Methane Reaction. ACS Catal. 2020, 10, 3074–3083. [Google Scholar] [CrossRef]
- Shi, X.R.; Wang, P.; Jing, C.; Wu, K.; Xu, S.; Klötzer, B. The formation of O vacancy on ZrO2/Pd and its effect on methane dry reforming: Insights from DFT and microkinetic modeling. Appl. Surf. Sci. 2023, 619, 156679. [Google Scholar] [CrossRef]
- Das, S.; Bhattar, S.; Liu, L.; Wang, Z.; Xi, S.; Spivey, J.J.; Kawi, S. Effect of Partial Fe Substitution in La0.9Sr0.1 NiO3 Perovskite-Derived Catalysts on the Reaction Mechanism of Methane Dry Reforming. ACS Catal. 2020, 10, 12466–12486. [Google Scholar] [CrossRef]
- Laosiripojana, N.; Sutthisripok, W.; Assabumrungrat, S. Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation. Chem. Eng. J. 2005, 112, 13–22. [Google Scholar] [CrossRef]
- Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M.H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Appl. Catal. B 2018, 230, 220–236. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Liang, Y.; Douthwaite, M.; Huang, X.; Zhao, B.; Tang, Q.; Liu, L.; Dong, J. Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Res. 2023, 16, 6085–6093. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Yao, L.; Hu, C. Temperature hysteresis in dry reforming of methane on Ni/SBA-15 catalyst: Low temperature activity originated from the synergy of Ni0 and carbon nanotubes. Appl. Catal. B 2023, 333, 122756. [Google Scholar] [CrossRef]
- Zhang, M.; Ding, L.; Zheng, J.; Liu, L.; Alsulami, H.; Kutbi, M.A.; Xu, J. Surface modification of carbon fibers with hydrophilic Fe3O4 nanoparticles for nickel-based multifunctional composites. Appl. Surf. Sci. 2020, 509, 145348. [Google Scholar] [CrossRef]
- Liu, C.; Shi, X.; Yue, K.; Wang, P.; Zhan, K.; Wang, X.; Xia, B.Y.; Yan, Y. S-Species-Evoked High-Valence Ni2+δ of the Evolved β-Ni(OH)2 Electrode for Selective Oxidation of 5-Hydroxymethylfurfural. Adv. Mater. 2023, 35, 2211177. [Google Scholar] [CrossRef]
- Rogers, J.L.; Mangarella, M.C.; D’Amico, A.D.; Gallagher, J.R.; Dutzer, M.R.; Stavitski, E.; Miller, J.T.; Sievers, C. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts. ACS Catal. 2016, 6, 5873–5886. [Google Scholar] [CrossRef]
- Sumi, T.; Murata, D.; Kitamura, H.; Kubota, S.; Miyake, K.; Uchida, Y.; Miyamoto, M.; Nishiyama, N. Formation of Ni Species Anchored on a Silicalite-1 Zeolite Framework as a Catalyst with High Coke Deposition Resistance on Dry Reforming of Methane. Cryst. Growth Des. 2023, 23, 3308–3313. [Google Scholar] [CrossRef]
- Manabayeva, A.M.; Mäki-Arvela, P.; Vajglová, Z.; Martinéz-Klimov, M.; Tirri, T.; Baizhumanova, T.S.; Grigor’eva, V.P.; Zhumabek, M.; Aubakirov, Y.A.; Simakova, I.L.; et al. Dry Reforming of Methane over Ni–Fe–Al Catalysts Prepared by Solution Combustion Synthesis. Ind. Eng. Chem. Res. 2023, 62, 11439–11455. [Google Scholar] [CrossRef]
- Gu, Y.; Cao, Z.; Zhao, M.; Xu, Y.; Lu, N. Single-Atom Fe Nanozyme with Enhanced Oxidase-like Activity for the Colorimetric Detection of Ascorbic Acid and Glutathione. Biosensors 2023, 13, 487. [Google Scholar] [CrossRef] [PubMed]
- Akri, M.; El Kasmi, A.; Batiot-Dupeyrat, C.; Qiao, B. Highly Active and Carbon-Resistant Nickel Single-Atom Catalysts for Methane Dry Reforming. Catalysts 2020, 10, 630. [Google Scholar] [CrossRef]
- Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619. [Google Scholar] [CrossRef]
- Akri, M.; Zhao, S.; Li, X.; Zang, K.; Lee, A.F.; Isaacs, M.A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y.; et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181. [Google Scholar] [CrossRef]
- Gould, T.D.; Montemore, M.M.; Lubers, A.M.; Ellis, L.D.; Weimer, A.W.; Falconer, J.L.; Medlin, J.W. Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition. Appl. Catal. A Gen. 2015, 492, 107–116. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Song, J.; Li, H.; Zhao, Y. Study on High Activity and Outstanding Stability of Hollow-NiPt@SiO2 Core–Shell Structure Catalyst for DRM Reaction. Front. Chem. 2020, 8, 220. [Google Scholar] [CrossRef]
- Li, H.; Hao, C.; Tian, J.; Wang, S.; Zhao, C. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination. Chem. Catal. 2022, 2, 1748–1763. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Liu, J.; Li, T.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, Y. Dry reforming of methane over Ni/SiO2 catalysts: Role of support structure properties. Fuel 2023, 340, 127490. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Ibrahim, A.A.; Arafat, Y.; Atia, H.; Abasaeed, A.E.; Al-Fatesh, A.S. Iridium promoted Ni-Co/Al2O3-ZrO2 catalyst for dry reforming of methane. Can. J. Chem. Eng. 2018, 96, 955–960. [Google Scholar] [CrossRef]
- Song, Q.; Ran, R.; Wu, X.; Si, Z.; Weng, D. Dry reforming of methane over Ni catalysts supported on micro- and mesoporous silica. J. CO2 Util. 2023, 68, 102387. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, J.; Xu, R.; Zhang, R.; Ge, J. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013. [Google Scholar] [CrossRef]
- Haug, L.; Thurner, C.; Bekheet, M.F.; Ploner, K.; Bischoff, B.; Gurlo, A.; Kunz, M.; Sartory, B.; Penner, S.; Klötzer, B. Pivotal Role of Ni/ZrO2 Phase Boundaries for Coke-Resistant Methane Dry Reforming Catalysts. Catalysts 2023, 13, 804. [Google Scholar] [CrossRef]
- Odedairo, T.; Chen, J.; Zhu, Z. Metal–support interface of a novel Ni–CeO2 catalyst for dry reforming of methane. Catal. Commun. 2013, 31, 25–31. [Google Scholar] [CrossRef]
- Gao, X.; Lin, W.; Ge, Z.; Ge, H.; Kawi, S. Modification Strategies of Ni-Based Catalysts with Metal Oxides for Dry Reforming of Methane. Methane 2022, 1, 139–157. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Chen, M.; Xie, X.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. B 2023, 322, 122088. [Google Scholar] [CrossRef]
- Chatla, A.; Almanassra, I.W.; Kallem, P.; Atieh, M.A.; Alawadhi, H.; Akula, V.; Banat, F. Dry (CO2) reforming of methane over zirconium promoted Ni-MgO mixed oxide catalyst: Effect of Zr addition. J. CO2 Util. 2022, 62, 102082. [Google Scholar] [CrossRef]
- Shang, Z.; Li, S.; Li, L.; Liu, G.; Liang, X. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl Catal. B 2017, 201, 302–309. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, Z.; Wang, L.; Guo, Y. Preparation of C–N co-doped zirconia electrospun nanofibers and their humidity sensing properties. Mater. Adv. 2022, 3, 7265–7271. [Google Scholar] [CrossRef]
- Naeem, M.A.; Al-Fatesh, A.S.; Fakeeha, A.H.; Abasaeed, A.E. Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. Int. J. Hydrogen Energy 2014, 39, 17009–17023. [Google Scholar] [CrossRef]
- Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B 2019, 246, 221–231. [Google Scholar] [CrossRef]
- Velty, A.; Corma, A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels. Chem. Soc. Rev. 2023, 52, 1773–1946. [Google Scholar] [CrossRef]
- Kim, D.H.; Seo, J.-C.; Kim, Y.J.; Kim, J.; Yoon, S.; Ra, H.; Kim, M.-J.; Lee, K. Ni-Co alloy catalyst derived from NixCoy/MgAl2O4 via exsolution method for high coke resistance toward dry reforming of methane. Catal. Today 2024, 425, 114337. [Google Scholar] [CrossRef]
- Singh, S.; Zubenko, D.; Rosen, B.A. Influence of LaNiO3 Shape on Its Solid-Phase Crystallization into Coke-Free Reforming Catalysts. ACS Catal. 2016, 6, 4199–4205. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, T.; Dong, X.; Li, M.; Wang, H. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane. Appl. Catal. B 2018, 224, 214–221. [Google Scholar] [CrossRef]
- Bonmassar, N.; Bekheet, M.F.; Schlicker, L.; Gili, A.; Gurlo, A.; Doran, A.; Gao, Y.; Heggen, M.; Bernardi, J.; Klötzer, B.; et al. In Situ-Determined Catalytically Active State of LaNiO3 in Methane Dry Reforming. ACS Catal. 2020, 10, 1102–1112. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Zhang, L.; Gao, J.; Shao, Y.; Dong, D.; Zhang, S.; Liu, Q.; Xu, L.; Hu, X. Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts. J. Energy Inst. 2020, 93, 1581–1596. [Google Scholar] [CrossRef]
- Zhang, Y.; Zu, Y.; He, D.; Liang, J.; Zhu, L.; Mei, Y.; Luo, Y. The tailored role of “defect” sites on γ-alumina: A key to yield an efficient methane dry reforming catalyst with superior nickel utilization. Appl. Catal. B 2022, 315, 121539. [Google Scholar] [CrossRef]
- Köpfle, N.; Ploner, K.; Lackner, P.; Götsch, T.; Thurner, C.; Carbonio, E.; Hävecker, M.; Knop-Gericke, A.; Schlicker, L.; Doran, A.; et al. Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach. Catalysts 2020, 10, 1000. [Google Scholar] [CrossRef]
- Mayr, L.; Shi, X.; Köpfle, N.; Klötzer, B.; Zemlyanov, D.Y.; Penner, S. Tuning of the copper–zirconia phase boundary for selectivity control of methanol conversion. J. Catal. 2016, 339, 111–122. [Google Scholar] [CrossRef]
- Köpfle, N.; Mayr, L.; Lackner, P.; Schmid, M.; Schmidmair, D.; Götsch, T.; Penner, S.; Kloetzer, B. Zirconium-Palladium Interactions during Dry Reforming of Methane. ECS Trans. 2017, 78, 2419–2430. [Google Scholar] [CrossRef]
- Bikaljevic, D.; Rameshan, R.; Köpfle, N.; Götsch, T.; Mühlegger, E.; Schlögl, R.; Penner, S.; Memmel, N.; Klötzer, B. Structural and kinetic aspects of CO oxidation on ZnOx-modified Cu surfaces. Appl. Catal. A Gen. 2019, 572, 151–157. [Google Scholar] [CrossRef]
- Haug, L.; Thurner, C.; Bekheet, M.F.; Bischoff, B.; Gurlo, A.; Kunz, M.; Sartory, B.; Penner, S.; Klötzer, B. Zirconium Carbide Mediates Coke-Resistant Methane Dry Reforming on Nickel-Zirconium Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202213249. [Google Scholar] [CrossRef]
- Thalinger, R.; Stöger-Pollach, M.; Hetaba, W.; Feuerbacher, M.; Klötzer, B.; Penner, S. Electron microscopy investigations of metal-support interaction effects in M/Y2O3 and M/ZrO2 thin films (M = Cu, Ni). Mater. Chem. Phys. 2013, 143, 167–177. [Google Scholar] [CrossRef]
- Wolfbeisser, A.; Klötzer, B.; Mayr, L.; Rameshan, R.; Zemlyanov, D.; Bernardi, J.; Föttinger, K.; Rupprechter, G. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts. Catal. Sci. Technol. 2015, 5, 967–978. [Google Scholar] [CrossRef]
- Liu, Z.; Grinter, D.C.; Lustemberg, P.G.; Nguyen-Phan, T.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E.J.; Stacchiola, D.J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C−H Bond Breaking. Angew. Chem. 2016, 128, 7581–7585. [Google Scholar] [CrossRef]
- Yadav, P.K.; Patrikar, K.; Mondal, A.; Sharma, S. Ni/Co in and on CeO2: A comparative study on the dry reforming reaction. Sustain. Energy Fuels 2023, 7, 3853–3870. [Google Scholar] [CrossRef]
- Shen, D.; Li, Z.; Shan, J.; Yu, G.; Wang, X.; Zhang, Y.; Liu, C.; Lyu, S.; Li, J.; Li, L. Synergistic Pt-CeO2 interface boosting low temperature dry reforming of methane. Appl. Catal. B 2022, 318, 121809. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Z.; Ding, F.; Guo, X.; Wang, G. Syngas Production via Steam–CO 2 Dual Reforming of Methane over LA-Ni/ZrO2 Catalyst Prepared by L-Arginine Ligand-Assisted Strategy: Enhanced Activity and Stability. ACS Sustain. Chem. Eng. 2015, 3, 3461–3476. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, L.; Cheng, Z.; Zhou, Z. Syngas Production via Combined Steam and Carbon Dioxide Reforming of Methane over Ni-CexM1−xO2(M = Ti or Zr) Catalysts. Ind. Eng. Chem. Res. 2022, 61, 12978–12988. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Y.; Li, Z.; Huang, P.; Liu, X.; Guo, Y.; Wang, Y. Engineering a Nickel–Oxygen Vacancy Interface for Enhanced Dry Reforming of Methane: A Promoted Effect of CeO2 Introduction into Ni/MgO. ACS Catal. 2023, 13, 15535–15545. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Guo, R.; Liu, Y.; Zhang, M.; Sunarso, J.; Liu, D. Size-regulated co-doped hetero-interfaced 3D honeycomb MXene as high performance electromagnetic absorber with anti-corrosion performance. Appl. Surf. Sci. 2023, 645, 158846. [Google Scholar] [CrossRef]
- Wysocka, I.; Karczewski, J.; Gołąbiewska, A.; Łapiński, M.; Cieślik, B.M.; Maciejewski, M.; Kościelska, B.; Rogala, A. Nickel phase deposition on V2CTx/V2AlC as catalyst precursors for a dry methane reforming: The effect of the deposition method on the morphology and catalytic activity. Int. J. Hydrogen Energy 2023, 48, 10922–10940. [Google Scholar] [CrossRef]
- Shi, X.-R.; Zhang, Y.; Zong, S.; Gu, W.; Ma, P.; Lu, N. Interaction of Ethylene with Irn (n = 1–10): From Bare Clusters to γ-Al2O3-Supported Nanoparticles. Nanomaterials 2019, 9, 331. [Google Scholar] [CrossRef]
- Jeon, O.S.; Lee, H.; Lee, K.S.; Paidi, V.K.; Ji, Y.; Kwon, O.C.; Kim, J.P.; Myung, J.H.; Park, S.Y.; Yoo, Y.J.; et al. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by in Situ Reduction. ACS Appl. Mater. Interfaces 2022, 14, 12140–12148. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, F.; Wang, X.; Lu, K.; Liu, X.; Huang, Y.; Yu, F.; Chen, Y. Highly selective CO2 electroreduction to CO by the synergy between Ni–N–C and encapsulated Ni nanoparticles. Dalton Trans. 2023, 52, 928–935. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, N.; Zhang, J.; Yan, R.; Li, J.; Wang, L.; Wang, N.; Lv, M.; Zhang, M. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens. Bioelectron. 2020, 150, 111881. [Google Scholar] [CrossRef]
- He, X.; Xie, S.; Xu, J.; Yin, X.-B.; Zhang, M. Reactive Template-Engaged Synthesis of NiSx/MoS2 Nanosheets Decorated on Hollow and Porous Carbon Microtubes with Optimal Electronic Modulation toward High-Performance Enzyme-like Performance. Inorg. Chem. 2023, 62, 8033–8042. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Z.; Zheng, J.; Zhang, B.; Xu, J.; Yin, X.-B.; Zhang, M. In Situ Construction of Co-MoS2/Pd Nanosheets on Polypyrrole-Derived Nitrogen-Doped Carbon Microtubes as Multifunctional Catalysts with Enhanced Catalytic Performance. Inorg. Chem. 2022, 61, 542–553. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Xu, J.; Yin, X.-B.; Zhang, M. Construction of hierarchical Co, Fe Co-doped MoS2/polypyrrole heterostructure as an efficient bifunctional catalyst for enzyme-like and nitrophenol catalysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130225. [Google Scholar] [CrossRef]
- Xiao, Y.; Gong, W.; Zhao, M.; Zhang, M.; Lu, N. Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens. Actuators B Chem. 2023, 390, 134006. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, H.; Wang, L.; Wang, L.; Wang, C.; Wang, H.; Fang, W.; He, M.; Wu, Q.; Xiao, F.-S. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat. Catal. 2022, 5, 1030–1037. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Kong, W.; Li, S.; Yuan, C.; Bai, J.; Chen, X.; Zhang, J.; Sun, Y. Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catal. 2022, 12, 4382–4393. [Google Scholar] [CrossRef]
- He, L.; Li, M.; Li, W.-C.; Xu, W.; Wang, Y.; Wang, Y.-B.; Shen, W.; Lu, A.-H. Robust and Coke-free Ni Catalyst Stabilized by 1–2 nm-Thick Multielement Oxide for Methane Dry Reforming. ACS Catal. 2021, 11, 12409–12416. [Google Scholar] [CrossRef]
Entry | Elementary Step | ΔHθ (kJ/mol) |
---|---|---|
1 | CO2 + CH4 → 2H2 + 2CO | +247 |
2 | CO2 + H2 → CO + H2O | +41 |
3 | CH4 → C + 2H2 | +75 |
4 | 2CO → C + CO2 | −172 |
5 | CO + H2 → C + H2O | −175 |
Catalyst | Reaction Condition | H2/CO | CO2 Conversion Rate | CH4 Conversion Rate | Stability (h) | Ref. |
---|---|---|---|---|---|---|
Ni@NiSiAlMgOx | T = 873 K, pCH4:CO2 = 1:1, GHSV = 30,000 mL gcat−1 h−1 | 0.78 | 40% | 31% | ~320 | [85] |
Ni-cerium oxide nanocatalysts | T = 873.15 K, pCH4:CO2:N2 = 1:1:2, GHSV = 10,000 h−1 | N.A. | 60% | 40% | 550 | [76] |
Ni/BNf | T = 1023.15 K, pCH4:CO2 = 1:1, WHSV = 25,000 mL g−1 h−1 | 0.90 | N.A. | 60% | 100 | [19] |
Ni/CeO2-SiO2-C | T = 973.15 K, pCH4:CO2:Ar = 1:1:2, GHSV = 48,000 mL g−1 h−1 | 0.85 | 80.5% | 67.8% | 50 | [52] |
Ni/CeO2-SiO2-P | T = 973.15 K, pCH4:CO2:Ar = 1:1:2, GHSV = 48,000 mL g−1 h−1 | 0.89 | 87.3% | 78.5% | 50 | [52] |
Ni/MgAl2O4 | T = 923.15 K, pCH4:CO2 = 1:1, GHSV = 40,000 mL g−1 h−1 | 0.96 | 71.5% | 59.4% | 100 | [39] |
Ni3Ir1/MgAl2O4 | T = 923.15 K, pCH4:CO2 = 1:1, GHSV = 40,000 mL g−1 h−1 | 0.97 | 73.0% | 61.0% | 100 | [39] |
Ir/MgAl2O4 | T = 923.15 K, pCH4:CO2 = 1:1, GHSV = 40,000 mL g−1 h−1 | 0.94 | 63.6% | 50.2% | 100 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Shi, X. Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming. Methane 2024, 3, 86-102. https://doi.org/10.3390/methane3010006
Wei M, Shi X. Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming. Methane. 2024; 3(1):86-102. https://doi.org/10.3390/methane3010006
Chicago/Turabian StyleWei, Minghui, and Xuerong Shi. 2024. "Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming" Methane 3, no. 1: 86-102. https://doi.org/10.3390/methane3010006
APA StyleWei, M., & Shi, X. (2024). Research Progress on Stability Control on Ni-Based Catalysts for Methane Dry Reforming. Methane, 3(1), 86-102. https://doi.org/10.3390/methane3010006