Technical–Economic Analyses of Electric Energy Generation by Biogas from Anaerobic Digestion of Sewage Sludge from an Aerobic Reactor with the Addition of Charcoal
Abstract
:1. Introduction
Anaerobic Digestion
2. Materials and Method
2.1. Experimental Prototypes
2.2. Physicochemical Analyses
2.3. Volume and Pressure Analyses
2.4. Hydraulic Retention Time
2.5. Biogas Measuring Equipment
2.6. Available Power and Energy
2.7. Structural Analyses of Charcoal
2.8. Economic Studies
Net Present Value (NPV)
- Residual Biomass—USD 65.24/MWh (BRL 349.00/MWh);
- Biogas—USD 72.91/MWh (BRL 390.00/MWh);
- Dedicated Biomass—USD 100.38/MWh (BRL 537.00/MWh).
2.9. GHG Emissions Avoided
3. Results and Discussion
3.1. Biogas Composition in Reactors
3.2. Physicochemical Results
3.3. Biogas Production Using Charcoal
3.3.1. Charcoal Analyses
3.3.2. Biogas Production Process Analysis
3.4. Economic Study
3.5. Power, Energy, and Avoided GHG Emissions
4. Conclusions
- The pH variation was smaller in E2 (37%) than in E1 (29%), both reaching alkaline values (8.6 for E1 and 8.1 for E2).
- There was a reduction in organic matter: E1 presented a −75% reduction in BOD, while E2 reduced −64%. E1 obtained a −41% reduction for COD, and E2 −6%.
- The production of CH4 was faster with the addition of charcoal, and the production of H2S was interrupted in E1.
- Although the industrial results were low (0.19 kW and 0.79 kW for E1 and E2), E2 showed more significant potential for energy recovery.
- In the economic scenario, companies with power above 2000 kW had a positive return (IRR of 15% in Scenario 1 and 10% in Scenario 2).
- With the addition of coal, the emission of 2307.97 tCO2/year can be avoided for plants generating 2000 kW.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Trata Brasil; Estudo Trata Brasil. Ociosidade das Redes de Esgoto—2015. Instituto Trata Brasil: Sao Paulo, Brazil. Available online: https://tratabrasil.org.br/categoria/saneamento-basico/ (accessed on 23 January 2019).
- Brazil. Law no 14,026, of 15 July 2020. Updates the Legal Framework for Basic Sanitation and Amends Law no 9,984, of 17 July 2000, to Give the National Water and Basic Sanitation Agency (ANA) the Power to Edit Standards Reference on the Sanitation Service, Law no 10,768, of 19 November 2003, to Change the Name and Attributions of the Position of Specialist in Water Resources, Law no 11,107, of 6 April 2005, to Prohibit the Provision by Public Service Program Contract Referred to in Art. 175 of the Federal Constitution, Law no 11,445, of 5 January 2007, to Improve the Structural Conditions of Basic Sanitation in the Country, Law no 12,305, of 2 August 2010, to Deal with the Deadlines for the Environmentally Appropriate Final Disposition of Tailings, Law no 13,089, of 12 January 2015 (Statute of the Metropolis), to Extend Its Scope to Micro-regions, and Law no 13,529, of 4 December 2017, to Authorize the Union to Participate in the Fund for the Exclusive Purpose of Financing Specialized Technical Services. Federal Official Gazette. 16 July 2020. Available online: https://www2.camara.leg.br/legin/fed/lei/2020/lei-14026-15-julho-2020-790419-publicacaooriginal-161096-pl.html (accessed on 30 September 2020).
- National Water Agency—ANA (Agência Nacional de Águas). Sewerage Atlas; Watershed Pollution Control: Brasília, Brazil; ANA: Brasilia, Brazil, 2010.
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 10, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Tabatabaei, M.; Soltanian, S.; Ghanavati, H.; Dadak, A. Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset. Waste Manag. 2019, 87, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Z.; Sharma, M.; Karpichev, Y.; Pandey, A.; Kuhad, R.C.; Bhat, R.; Punia, R.; Aghbashlo, M.; Tabatabaei, M.; Gupta, M.V. Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew. Sustain. Energy Rev. 2020, 131, 109965. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Waste to Energy—Key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef]
- Aktas, O.; Çeçen, F. Bioregeneration of activated carbon: A review. Int. Biodeterior. Biodegrad. 2007, 59, 257–272. [Google Scholar] [CrossRef]
- SNIS. Diagnóstico dos Serviços de Água e Esgotos—2007; MCIDADES.SNSA: Brasilia, Brazil, 2007. [Google Scholar]
- Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Using low-cost porous materials to increase biogas production: A case study in Extremadura (Spain). J. Clean. Prod. 2018, 198, 1165–1172. [Google Scholar] [CrossRef]
- Arif, S.; Liaquat, R.; Adil, M. Applications of materials as additives in anaerobic digestion technology. Renew. Sustain. Energy Rev. 2018, 97, 354–366. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Improving thermophilic anaerobic digestion of swine manure. Water Res. 1999, 33, 1805–1810. [Google Scholar] [CrossRef]
- Lü, F.; Luo, C.; Shao, L.; He, P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Luo, C.; Lu, F.; Shao, L.; He, P. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 2015, 68, 710–718. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Schoene, R.P.; Leon, P.A. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 2016, 135, 1054–1064. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Torri, C.; Fabbri, D. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass. Bioresour. Technol. 2014, 172, 335–341. [Google Scholar] [CrossRef]
- Li, Y.; Parki, S.Y.; Zhu, J. Solid state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Rasul, M.G.; Akbar, D.; Narayanan, R.; Mofijur, M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. Sci. Total Environ. 2021, 753, 141920. [Google Scholar] [CrossRef]
- Veeken, A.; Hamelers, B. Effect of temperature on hydrolysis rates of selected biowaste componentes. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Barros, R.M. Tratado Sobre Resíduos Sólidos: Gestão, Uso e Sustentabilidade; Interciência; Minas Gerais: Rio de Janeiro, Brazil; Acta: Rio de Janeiro, Brazil, 2012; ISBN 9788571932951. [Google Scholar]
- Dahiya, S.; Sarkar, S.O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef]
- Zinder, S.H. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Lett. 1990, 75, 125–137. [Google Scholar] [CrossRef]
- Abbas, Y.; Yun, S.; Wang, Z.; Zhang, Y.; Zhang, X.; Wang, K. Recent advances in bio-based carbon materials for anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2021, 135, 110378. [Google Scholar] [CrossRef]
- Paepatung, N.; Songkasiri, W.; Yasui, H.; Phalakornkule, C. Enhancing methanogenesis in fed-batch anaerobic digestion of high-strength sulfate-rich wastewater using zero valent scrap iron. J. Environ. Chem. Eng. 2020, 8, 104508. [Google Scholar] [CrossRef]
- Koster, I.W.; Lettinga, G. Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes 1988, 25, 51–59. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Surendra, K.C.; Jaisi, D.P.; Lu, H.; Unal-Tosun, G.; Sung, S.; Khanal, S.K. Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater. Bioresour. Technol. 2020, 301, 122711. [Google Scholar] [CrossRef] [PubMed]
- Pecora, V. Implementação de Uma Unidade Demonstrativa de Geração de Energia Elétrica a Partir do Biogás de Tratamento do Esgoto Residencial da USP: Estudo de Caso. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2006. [Google Scholar]
- Forster, P.V.; Ramaswamy, P.; Artaxo, T.; Berntsen, R.; Betts, D.W.; Fahey, J.; Haywood, J.; Lean, D.C.; Lowe, G.; Myhre, J.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf (accessed on 27 November 2020).
- Lindsey, R. Climate Change: Atmospheric Carbon Dioxide. NOAA. 14 August 2020. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on 27 November 2020).
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2019; p. 32. Available online: https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf (accessed on 27 November 2020).
- Fonseca, A.R. Tecnologias Sociais e Ecológicas Aplicadas ao Tratamento de Esgotos no Brasil. Master’s Thesis, Escola Nacional de Saúde Pública, São Paulo, Brazil, 2005. Cap.6. Rio de Janeiro. Brasil. 2008. [Google Scholar]
- Britto, J.O. Tecnologia de Produção de Biomassa Energética; Carvão Vegetal: Natal, Brazil, 2002; p. 16, n. 24. [Google Scholar]
- Fagbohungbe, M.O.; Herbert, B.M.J.; Hurst, L.; Ibeto, C.N.; Li, H.; Usmani, S.Q.; Semple, K.T. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 2017, 61, 236–249. [Google Scholar] [CrossRef]
- Johnravindar, D.; Liang, B.; Fu, R.; Luo, G.; Meruvu, H.; Yang, S.; Yuan, B.; Fei, Q. Supplementing granular activated carbon for enhanced methane production in anaerobic co-digestion of post-consumer substrates. Biomass Bioenergy 2020, 136, 105543. [Google Scholar] [CrossRef]
- Liu, F.; Rotaru, A.E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2013, 7, 408–415. [Google Scholar] [CrossRef]
- Morita, M.; Malvankar, N.S.; Franks, A.E.; Summers, Z.M.; Giloteaux, L.; Rotaru, A.E.; Rotaru, C.; Lovley, D.R. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2011, 2, e00159-11. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.M.; Barros, R.M.; Tiago Filho, G.L.; Dos Santos, I.F.S.; Sampaio, L.C.; Dos Santos, T.V.; Da Silva, F.d.G.B.; Silva, A.P.M.; De Freitas, J.V.R.d.F. Power generation potential in posture aviaries in Brazil in the context of a circular economy. Sustain. Energy Technol. Assess. 2016, 18, 153–163. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Sailer, G.; Eichermüller, J.; Poetsch, J.; Paczkowski, S.; Pelz, S.; Oechsner, H.; Müller, J. Optimizing anaerobic digestion of organic fraction of municipal solid waste (OFMSW) by using biomass ashes as additives. Waste Manag. 2020, 109, 136–148. [Google Scholar] [CrossRef]
- Pin, B.V.d.R.; Barros, R.M.; Lora, E.E.S.; del Olmo, O.A.; Dos Santos, I.F.S.; Ribeiro, E.M.R.; De Freitas, J.V. Energetic use of biogas from the anaerobic digestion of coffee wastewater in southern Minas Gerais, Brazil. Renew. Energy 2020, 146, 2084–2094. [Google Scholar] [CrossRef]
- Cañote, S.J.B.; Barros, R.M.; Lora, E.E.S.; Del Olmo, O.A.; Dos Santos, I.F.S.; Piñas, J.A.V.; Ribeiro, E.M.; De Freitas, J.V.R.; De Castro e Silva, H.L. Energy and Economic Evaluation of the Production of Biogas from Anaerobic and Aerobic Sludge in Brazil. Waste Biomass Valorization 2020, 12, 947–969. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater; APHA/AWWA/WEF: Washington, DC, USA, 2012; p. 541. ISBN 9780875532356. [Google Scholar]
- Van Haandel, A.; Gatze, L. Tratamento Anaeróbio de Esgotos: Um Manual para Regiões de Clima Quente; Epgraf: Campina Grand, Brazil, 2004; p. 240. [Google Scholar]
- Von Sperling, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos; Princípios do Tratamento Biológico de Águas Residuárias, Volume 1; Departamento de Engenharia Sanitária e Ambiental, UFMG: Belo Horizonte, Brazil, 1995; 240p. [Google Scholar]
- CETESB. Effluents; version 1.0; CETESB, the Brazilian Ministry of Science and Technology—Software and Manual; The Environmental Company of the State of São Paulo: São Paulo, Brazil, 2006. Available online: http://www.cetesb.sp.gov.br/mudancas-climaticas/biogas/Softwares/16-Softwares (accessed on 6 February 2014). (In Portuguese)
- Bove, R.; Lunghi, P. Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers. Manag. 2006, 47, 1391–1401. [Google Scholar] [CrossRef]
- Wang, C.; Yun, S.; Xu, H.; Wang, Z.; Han, F.; Zhang, Y.; Si, S.; Yiming, M. Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: An efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram. Int. 2020, 46, 3292–3303. [Google Scholar] [CrossRef]
- Silva, T.R.; Barros, R.M.; Tiago Filho, G.L.; dos Santos, I.F.S. Methodology for the determination of optimum power of a Thermal Power Plant (TPP) by biogas from sanitary landfill. Waste Manag. 2017, 65, 75–91. [Google Scholar] [CrossRef]
- Union of the Sugarcane Industry—UNICA (União da Indústria de Cana-de-Açúcar). Balanço de Atividades 2012/2013 a 2018/2019; Union of the Sugarcane Insutry: Wahington, DC, USA, 2019; p. 13. Available online: https://www.unica.com.br/wp-content/uploads/2019/06/Relatorio-Atividades-201213-a-201819.pdf (accessed on 24 November 2020).
- Brazilian Central Bank. Quotations. Available online: https://www.bcb.gov.br/ (accessed on 28 November 2020).
- de Dornfeld Braga Colturato, L.F. Brazil. National Secretariat of Environmental Sanitation. Probiogas. In State of the Art Dry Methanization (O Estado da Arte da Tecnologia de Metanização Seca)/Probiogas Technology; Organizers, Ministry of Cities, Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ); Ministry of Cities: Brasília, DF, Brazil, 2015; p. 97. Available online: https://www.giz.de/en/downloads/probiogas-metanizacao-rsu.pdf (accessed on 10 June 2020)ISBN 978-85-7958-040-6.
- Tolmasquim, M.T. Energia Termelétrica: Gás Natural, Biomassa, Carvão, Nuclear; EPE: Rio de Janeiro, Brazil, 2016; 417p. [Google Scholar]
- National Electricity Energy Agency—ANEEL: Normative Resolution nº 482, of 17 April 2012. Normative Resolution nº 482/2012—It Establishes the General Conditions for the Access of Microgeneration and Distributed Minigeration to the Systems of Distribution of Electric Energy, the System of Compensation of Electric Energy, and Gives Other Measures. Available online: http://www2.aneel.gov.br/cedoc/ren2012482.pdf (accessed on 16 October 2017).
- National Electricity Energy Agency—ANEEL: Normative Resolution nº 687, of 24 November 2015. Normative Resolution No. 687/2015—Alters Normative Resolution No. 482 of 17 April 2012, and Modules 1 and 3 of the Distribution Procedures—PRODIST. Available online: http://www2.aneel.gov.br/cedoc/ren2015687.pdf (accessed on 22 October 2017).
- Brazil. Law No. 10,848, of 15 March 2004. Provides for the sale of electric energy, amends Laws No. 5,655, 20 May 1971, 8,631, of 4 March 1993, 9,074, of 7 July 1995, 9,427, of 26 December 1996, 9,478, of 6 August 1997, 9,648, 27 May 1998, 9,991, of 24 July 2000, 10,438, of 26 April 2002, and other measures. In Official Federal Gazette; 16 March 2004. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.848.htm (accessed on 28 November 2020).
- Brazil. Law no 13,203, of 8 December 2015. Deals with the Renegotiation of the Hydrological Risk of Electricity Generation; Institutes the Bonus for the Grant; and Amends Laws No. 12,783, of 11 January 2013, Which Provides for Electric Energy Concessions, 9,427, of 26 December 1996, Which Governs the Regime for Public Electricity Service Concessions, 9,478, of 6 August 1997, Establishing the National Energy Policy Council, 9,991, of 24 July 2000, Which Provides for Investments in Research and Development and Energy Efficiency by Concessionaires, Licensees and Authorized Persons in the Energy Sector 10.438, of 26 April 2002, 10.848, of 15 March 2004, Which Provides for the Sale of Electric Energy, and 11.488, of 15 June 2007, Which Equates the Consumer to Self-Producer Who Meets Requirements That Specific. In Official Federal Gazette; 9 December 2015. Available online: http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Lei/L13203.htm (accessed on 28 November 2020).
- Energy Research Company—EPE. EPE Publishes Infographic on the Annual Specific Reference Value—VREs. Available online: https://www.epe.gov.br/pt/imprensa/noticias/epe-publica-infografico-sobre-o-valor-anual-de-referencia-especifico-vres (accessed on 28 November 2020).
- Tchobanoglous, G.; Burton, F.; Stensel, D. Wastewater Engineering: Treatment and Reuse, 4th ed.; Metcalf & Eddy Inc.: Wakefield, MA, USA; Mcgraw-Hill: New York, NY, USA, 2002; p. 1334. [Google Scholar]
- Barros, R.M.; Tiago Filho, G.L. Small hydropower and carbon credits revenue for an SHP project in national isolated and interconnected systems in Brazil. Renew. Energy 2012, 48, 27–34. [Google Scholar] [CrossRef]
- Brazil. The Brazilian Ministry of Science, Technology, Innovations and Communications. Dispatch Analysis Method: Operating Margin Emission Factors by Dispatch Analysis Method: CO2 Emission Factors for Power Generation in the Brazilian; The Brazilian Ministry of Science, Technology, Innovations and Communications: Brasil, Brazil, 2019. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/cgcl/paginas/metodo-da-analise-de-despacho#:~:text=Os%20fatores%20de%20emiss%C3%A3o%20de,gere%20eletricidade%20para%20a%20rede (accessed on 5 June 2020).
- Brazil. MCT. National Interconnected System—Base Year 2019. 2020. Available online: https://www.mctic.gov.br/mctic/opencms/ciencia/SEPED/clima/textogeral/emissao_despacho.html (accessed on 29 May 2020). (In Portuguese)
- Brazil. MCT. The Brazilian Ministry of Science and Technology. Climate—Dispatch Analysis Method—Operating Margin Emission Factors Using the Dispatch Analysis Method. 2019. 2020. Available online: https://www.mctic.gov.br/mctic/opencms/ciencia/SEPED/clima/arquivos/emissoes_co2/Despacho_2019_nov_dez.xlsx (accessed on 8 June 2020).
- Nielsen, M.; Nielsen, O.-K.; Plejdrup, M. Danish Emission Inventories for Stationary Combustion Plants. Inventories Until 2011; Aarhus University, DCE—Danish Centre for Environment and Energy: Roskilde, Denmark, 188 pp. Scientific Report from DCE—Danish Centre for Environment and Energy No. 102; 2014; Available online: http://www.dce.au.dk/Pub/SR102.pdf (accessed on 5 June 2020).
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef]
- Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Song, C. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour. Technol. 2017, 227, 286–296. [Google Scholar] [CrossRef]
- National Agency of Petroleum, Natural Gas and Biofuels—ANP. Resolution ANP N° 685 of 06/29/2017. It establishes the rules for the approval of quality control and the specification of biomethane from landfills and sewage treatment plants for vehicular use and residential, industrial, and commercial facilities to be marketed throughout the national territory. Official Journal of the Union, 8 January 2007 and rectified in 11 January 2007. Available online: https://www.legisweb.com.br/legislacao/?id=345545 (accessed on 24 January 2018).
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. [Google Scholar] [CrossRef]
- Chernicharo, C.A.L. Reatores Anaeróbios; Princípios do tratamento biológico de águas residuárias, v. 5; DESA/UFMG: Belo Horizonte, Brazil, 2005; 245p. [Google Scholar]
- Felca, A.T.A.; Barros, R.M.; Tiago Filho, G.L.; Dos Santos, I.F.S.; Ribeiro, E.M. Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the South of Minas Gerais, Brazil as a potential energy source. Sustain. Cities Soc. 2018, 41, 139–153. [Google Scholar] [CrossRef]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.I.A.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Let.t 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
Parameter | Unit | Inlet | Outlet E1 | Variation E1 | Outlet E2 | Variation E2 | ||
---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |||||
pH | - | 6.3 | 8.6 | 0.1 | 37% | 8.1 | 0.1 | 29% |
Total solids (TS) | g/L | 8.85 | 3.96 | 0.53 | −55% | 7.82 | 0.9 | −12% |
Fixed solids (FS) | g/L | 3.26 | 1.26 | 0.18 | −61% | 2.91 | 0.26 | −11% |
Volatile solids (VS) | g/L | 5.59 | 2.7 | 0.34 | −52% | 4.91 | 0.64 | −12% |
BOD | mg/L | 2999 | 755.38 | 104.73 | −75% | 1071.45 | 92.52 | −64% |
COD | mg/L | 1984.3 | 1168 | 6 | −41% | 1874.67 | 312.44 | −6% |
Total nitrogen | mg N-Nkt/L | 112 | 438.47 | 30.62 | 291% | 665.87 | 75.96 | 495% |
Electrical conductivity | µs/cm | 1276 | 1702.33 | 33.56 | 33% | 1858.33 | 2.22 | 46% |
COD/BOD | adimensional | 0.66 | 1.55 | 134% | 1.75 | 164% |
Reading Date | Experiment/Experimental Unit | CH4 (%) | Mean CH4 (%) | CO2 (%) | Mean CO2 (%) | O2 (%) | Mean O2 (%) | CO (ppm) | Mean CO (ppm) | H2S (ppm) | Mean H2S (ppm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
19 April 2018 | E2 | EU1 | 15.4 | 23.3 | 14.8 | 21.1 | 12.5 | 9.5 | 2 | 13 | 113 | 310 |
EU2 | 39.4 | 35.9 | 0.4 | 30 | 612 | |||||||
EU3 | 15.2 | 12.5 | 15.7 | 7 | 204 | |||||||
E1 | EU4 | 8 | 6.4 | 6.8 | 6.4 | 17.4 | 17.8 | 4 | 10.3 | 223 | 99 | |
EU5 | 4.1 | 5.3 | 18.7 | 8 | 41 | |||||||
EU6 | 7.1 | 7.2 | 17.3 | 19 | 33 | |||||||
25 April 2018 | E2 | EU1 | 34.7 | 38 | 6.9 | 20.8 | 17.3 | 14.5 | 2 | 5.3 | 307 | 289 |
EU2 | 49.4 | 23.3 | 11.9 | 6 | 267 | |||||||
EU3 | 30.03 | 32.1 | 14.4 | 8 | 294 | |||||||
E1 | EU4 | 57.5 | 51.9 | 23.1 | 26.3 | 14.6 | 6.9 | 5 | 13.7 | 142 | 126 | |
EU5 | 43.2 | 24.5 | 5.7 | 13 | 102 | |||||||
EU6 | 55 | 31.3 | 0.5 | 23 | 134 | |||||||
4 May 2018 | E2 | EU1 | 43.5 | 50.8 | 24.7 | 29.1 | 11.8 | 10.1 | 0 | 1.7 | 116 | 267 |
EU2 | 59.1 | 31.4 | 9.5 | 2 | 197 | |||||||
EU3 | 49.9 | 31.2 | 9 | 3 | 488 | |||||||
E1 | EU4 | 45.1 | 44.2 | 20.8 | 19.2 | 12 | 14 | 2 | 2.7 | 132 | 111 | |
EU5 | 38.8 | 7.1 | 17.7 | 1 | 48 | |||||||
EU6 | 48.7 | 29.7 | 12.3 | 5 | 153 | |||||||
15 May 2018 | E2 | EU1 | 58 | 62.2 | 30.4 | 24.7 | 3.2 | 10.2 | 3 | 2 | 178 | 234 |
EU2 | 64.2 | 22.8 | 8.4 | 3 | 149 | |||||||
EU3 | 64.4 | 21 | 19 | 0 | 374 | |||||||
E1 | EU4 | 24.3 | 29.1 | 3.2 | 15.8 | 20.6 | 18.7 | 0 | 1.3 | 41 | 72 | |
EU5 | 32.4 | 26.6 | 15.6 | 1 | 149 | |||||||
EU6 | 30.6 | 17.5 | 19.8 | 3 | 25 | |||||||
21 May 2018 | E2 | EU1 | 16.6 | 34.5 | 11 | 19.7 | 19.3 | 13.7 | 0 | 1 | 321 | 192 |
EU2 | 51.3 | 26.6 | 2.1 | 3 | 190 | |||||||
EU3 | 35.7 | 21.4 | 19.7 | 0 | 65 | |||||||
E1 | EU4 | 7.2 | 8.9 | 5.7 | 6.4 | 17.6 | 18.5 | 0 | 0 | 105 | 61 | |
EU5 | 13.9 | 9.1 | 18.7 | 0 | 72 | |||||||
EU6 | 5.6 | 4.5 | 19.2 | 0 | 5 |
Sample | Qbiogas (L/day) | LCH4/Lsludge | m3 CH4/m3 sludge | m3 CH4/kg substrate |
---|---|---|---|---|
E1 | 39.5617284 | 0.00023057 | 0.00000023 | 0.000000226 |
E2 | 38.19753083 | 0.00019877 | 0.0000002 | 0.000000195 |
Sample | m3 CH4/kg COD | m3 CH4/kg BOD | m3 CH4/kg TS | m3 CH4/kg VS |
E1 | 0.0002825 | 0.0001028 | 0.0000472 | 0.0000798 |
E2 | 0.0018131 | 0.0001031 | 0.000193 | 0.0002923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, C.R.; Hincapie, M.D.V.; Barros, R.M.; Córdova, M.E.H.; de Castro e Silva, H.L.; dos Santos, I.F.S.; Lora, E.E.S.; Filho, G.L.T.; Freitas, J.V.R.d.; Crispim, A.M.d.C.; et al. Technical–Economic Analyses of Electric Energy Generation by Biogas from Anaerobic Digestion of Sewage Sludge from an Aerobic Reactor with the Addition of Charcoal. Methane 2024, 3, 595-616. https://doi.org/10.3390/methane3040034
Garcia CR, Hincapie MDV, Barros RM, Córdova MEH, de Castro e Silva HL, dos Santos IFS, Lora EES, Filho GLT, Freitas JVRd, Crispim AMdC, et al. Technical–Economic Analyses of Electric Energy Generation by Biogas from Anaerobic Digestion of Sewage Sludge from an Aerobic Reactor with the Addition of Charcoal. Methane. 2024; 3(4):595-616. https://doi.org/10.3390/methane3040034
Chicago/Turabian StyleGarcia, Cornélio Ribeiro, Michael Danilo Vargas Hincapie, Regina Mambeli Barros, Maxi Estefany Huamán Córdova, Hellen Luisa de Castro e Silva, Ivan Felipe Silva dos Santos, Electo Eduardo Silva Lora, Geraldo Lucio Tiago Filho, João Victor Rocha de Freitas, Adriele Maria de Cássia Crispim, and et al. 2024. "Technical–Economic Analyses of Electric Energy Generation by Biogas from Anaerobic Digestion of Sewage Sludge from an Aerobic Reactor with the Addition of Charcoal" Methane 3, no. 4: 595-616. https://doi.org/10.3390/methane3040034
APA StyleGarcia, C. R., Hincapie, M. D. V., Barros, R. M., Córdova, M. E. H., de Castro e Silva, H. L., dos Santos, I. F. S., Lora, E. E. S., Filho, G. L. T., Freitas, J. V. R. d., Crispim, A. M. d. C., & Pontes, A. J. M. d. O. (2024). Technical–Economic Analyses of Electric Energy Generation by Biogas from Anaerobic Digestion of Sewage Sludge from an Aerobic Reactor with the Addition of Charcoal. Methane, 3(4), 595-616. https://doi.org/10.3390/methane3040034