Methane Emissions in the ESG Framework at the World Level
Abstract
:1. Introduction
2. Literature Review
2.1. Methane Emissions and Environmental Mitigation
2.2. Socioeconomic Aspects and Impacts of Methane Emissions
2.3. Technologies for Monitoring and Regulation of Methane Emissions
3. Data and Methodologies
- Panel Data with Random Effects (REs). The Random Effects (REs) model assumes that individual-specific effects (unobserved heterogeneity) are randomly distributed and uncorrelated with the independent variables. This allows the model to estimate both time-invariant and time-varying variables, making it suitable for large datasets with repeated observations across entities. The mathematical structure is as follows: , where = dependent variable (methane emissions) for entity i at time t; = vector of independent variables (e.g., renewable energy use and governance indicators); = coefficients to be estimated; = random individual effect; = error term. The RE model is appropriate for assessing the impact of variables that vary over time while accounting for unobserved individual effects across countries [86,87,88].
- Panel Data with Fixed Effects (FEs). The Fixed Effects (FEs) model assumes that individual-specific effects are constant over time, allowing for the control of unobserved variables that may differ across entities but remain invariant over time. The mathematical structure is as follows: , where is the entity specific fixed effect (constant across time). The FE model is ideal for analyzing the effect of time-varying variables on methane emissions while controlling for country specific characteristics that do not change over time, such as geography [86,89,90].
- Pooled Ordinary Least Squares (OLS). The Pooled OLS model treats the dataset as simple cross-sectional regression, ignoring the panel structure. It assumes that there is no unobserved heterogeneity between entities. The mathematical structure is as follows: . While simple, this model is less robust in capturing the individual-specific effects or temporal dynamics. It serves as a baseline with other models [91,92,93].
- Weighted Least Squares (WLS). The WLS model addresses heteroscedasticity by assigning weights to observations, ensuring that observations with lower variability receive higher importance in the regression. The mathematical structure is as follows: , where = weights assigned to each observation, inversely proportional to variance. WLS is particularly useful in this study due to varying levels of data reliability across countries and years, ensuring unbiased and efficient estimates [94,95,96].
4. Econometric Results
4.1. Methane Emissions and the E (Environmental Component) Within the ESG Model
4.2. Methane Emissions and the S (Social Component) Within the ESG Model
4.3. Methane Emissions and the G (Governance Component) Within the ESG Model
5. Implications of Findings
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Zhuang, Q. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 2019, 12, 1–136. [Google Scholar] [CrossRef]
- Liu, S.; Liu, K.; Wang, K.; Chen, X.; Wu, K. Fossil-fuel and food systems equally dominate anthropogenic methane emissions in China. Environ. Sci. Technol. 2023, 57, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Cael, B.B.; Goodwin, A.P. Global methane pledge versus carbon dioxide emission reduction. Environ. Res. Lett. 2023, 18, 104015. [Google Scholar] [CrossRef]
- Wang, J.L.; Daniels, W.S.; Hammerling, D.M.; Harrison, M.; Burmaster, K.; George, F.C.; Ravikumar, A.P. Multiscale methane measurements at oil and gas facilities reveal necessary frameworks for improved emissions accounting. Environ. Sci. Technol. 2022, 56, 14743–14752. [Google Scholar] [CrossRef]
- Erland, B.M.; Thorpe, A.K.; Gamon, J.A. Recent advances toward transparent methane emissions monitoring: A review. Environ. Sci. Technol. 2022, 56, 16567–16581. [Google Scholar] [CrossRef]
- Sirigina, D.S.S.S.; Nazir, S.M. Non-fossil methane emissions mitigation from agricultural sector and its impact on sustainable development goals. Front. Chem. Eng. 2022, 4, 838265. [Google Scholar] [CrossRef]
- Esiri, A.E.; Babayeju, O.A.; Ekemezie, I.O. Standardizing methane emission monitoring: A global policy perspective for the oil and gas industry. Eng. Sci. Technol. J. 2024, 5, 2027–2038. [Google Scholar] [CrossRef]
- Sawyer, W.J.; Genina, I.; Brenneis, R.J.; Feng, H.; Li, Y.; Luo, S.X.L. Methane emissions and global warming: Mitigation technologies, policy ambitions, and global efforts. MIT Sci. Policy Rev. 2022, 3, 73–84. [Google Scholar] [CrossRef]
- Ogbowuokara, O.S.; Leton, T.G.; Ugbebor, J.N.; Orikpete, O.F. Developing climate governance strategies in Nigeria: An emphasis on methane emissions mitigation. J. Eng. Exact Sci. 2023, 9, 17383-01e. [Google Scholar] [CrossRef]
- Vernon, N.; Mylonas, V.; Black, S.; Minnett, D.; Parry, I. How to Cut Methane Emissions; International Monetary Fund: Washington, DC, USA, 2022. [Google Scholar]
- Castelijns, N. Monitor and reduce emissions to meet compliance and sustainability goals. Aust. Energy Prod. J. 2024, 64, S115–S118. [Google Scholar] [CrossRef]
- Stern, J.P. Measurement, Reporting, and Verification of Methane Emissions from Natural Gas and LNG Trade: Creating Transparent and Credible Frameworks; OIES Paper: ET.; The Oxford Institute for Energy Studies: Oxford, UK, 2022; p. 6. [Google Scholar]
- Abernethy, S.; Jackson, R.B. Atmospheric methane removal may reduce climate risks. Environ. Res. Lett. 2024, 19, 051001. [Google Scholar] [CrossRef]
- Olczak, M.; Piebalgs, A.; Balcombe, P. Methane regulation in the EU: Stakeholder perspectives on MRV and emissions reductions. Environ. Sci. Policy 2022, 137, 314–322. [Google Scholar] [CrossRef]
- Solarin, S.A.; Erdogan, S.; Okumus, I. Wavelet and Fourier augmented convergence analysis of methane emissions in more than two centuries: Implications for environmental management in OECD countries. Environ. Sci. Pollut. Res. 2022, 29, 54518–54530. [Google Scholar] [CrossRef] [PubMed]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Howarth, R.W. Methane emissions from fossil fuels: Exploring recent changes in green-house-gas reporting requirements for the State of New York. J. Integr. Environ. Sci. 2020, 17, 69–81. [Google Scholar] [CrossRef]
- Reisinger, A.; Clark, H.; Cowie, A.L.; Emmet-Booth, J.; Fischer, C.G.; Herrero, M.; Howden, M.; Leahy, S. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philos. Trans. R. Soc. A 2021, 379, 20200452. [Google Scholar] [CrossRef]
- Neuhaus, L. Recommendations for reducing methane emissions from agricultural sources in the United States. Environ. Envtl. L. Pol’y J. 2020, 43, 207. [Google Scholar]
- Scoones, I. Livestock, methane, and climate change: The politics of global assessments. Wiley Interdiscip. Rev. Clim. Chang. 2023, 1, 14. [Google Scholar] [CrossRef]
- Malley, C.S.; Borgford-Parnell, N.; Haeussling, S.; Howard, I.C.; Lefèvre, E.N.; Kuylenstierna, J.C. A roadmap to achieve the global methane pledge. Environ. Res. Clim. 2023, 2, 011003. [Google Scholar] [CrossRef]
- Song, C.; Zhu, J.J.; Willis, J.L.; Moore, D.P.; Zondlo, M.A.; Ren, Z.J. Methane emissions from municipal wastewater collection and treatment systems. Environ. Sci. Technol. 2023, 57, 2248–2261. [Google Scholar] [CrossRef]
- Fernández-Amador, O.; Oberdabernig, D.A.; Tomberger, P. Do methane emissions converge? Evidence from global panel data on production-and consumption-based emissions. Empir. Econ. 2022, 63, 877–900. [Google Scholar] [CrossRef] [PubMed]
- Ravishankara, A.R.; Kuylenstierna, J.C.; Michalopoulou, E.; Höglund-Isaksson, L.; Zhang, Y.; Seltzer, K.; Ru, M.; Castelino, R.; Faluvegi, G.; Borgford-Parnell, N.; et al. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Sadriwala, K.F.; Shannaq, B.; Sadriwala, M.F. GCC Cross-National Comparative Study on Environmental, Social, and Governance (ESG) Metrics Performance and Its Direct Implications for Economic Development Outcomes. In The AI Revolution: Driving Business Innovation and Research: Volume 2; Springer: Berlin/Heidelberg, Germany, 2024; pp. 429–441. [Google Scholar]
- Doni, F.; Johannsdottir, L. Environmental social and governance (ESG) ratings. Clim. Action 2020, 435–449. [Google Scholar] [CrossRef]
- Azar, C.; Martín, J.G.; Johansson, D.J.; Sterner, T. The social cost of methane. Clim. Chang. 2023, 176, 71. [Google Scholar] [CrossRef]
- Oyewunmi, T. Natural gas in a carbon-constrained world: Examining the role of institutions in curbing methane and other fugitive emissions. LSU J. Energy Law Resour. 2021, 9, 87. [Google Scholar]
- Ericsson, A. Methane Emissions and Economic Growth: An N-Shaped Environmental Kuznets Curve for the G20 Countries? Master’s Thesis, Umeå University, Umeå, Sweden, 2022. Available online: https://www.diva-portal.org/smash/get/diva2:1668414/Fulltext01.pdf (accessed on 10 October 2024).
- Djoukouo, A.F.D. Relationship between methane emissions and economic growth in Central Africa countries: Evidence from panel data. Glob. Transit. 2021, 3, 126–134. [Google Scholar] [CrossRef]
- Aleshina, S.; Delgado-Antequera, L.; Gemar, G. Assessing the economic implications of carbon emissions on climate change: Estimating the impact using methane-adjusted DICE model. Struct. Chang. Econ. Dyn. 2024, 71, 35–44. [Google Scholar] [CrossRef]
- Lorenzato, G.; Tordo, S.; Howells, H.M.; van den Berg, B. Financing Solutions to Reduce Natural Gas Flaring and Methane Emissions; World Bank Publications: Chicago, IL, USA, 2022. [Google Scholar]
- Garg, S.; Boz, D.E.; Gilbert, B.; Crompton, J. A critical review of natural gas emissions certification in the United States. Environ. Res. Lett. 2023, 18, 023002. [Google Scholar] [CrossRef]
- Errickson, F.C.; Keller, K.; Collins, W.D.; Srikrishnan, V.; Anthoff, D. Equity is more important for the social cost of methane than climate uncertainty. Nature 2021, 592, 564–570. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Tiwari, A.K. Empirical assessment of methane emissions, socioeconomic factors, and infant mortality in Europe. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2024. [Google Scholar]
- Piebalgs, A.; Olczak, M. The EU Can Reduce Global Methane Emissions by Jointly Purchasing Gas; European University Institute: Fiesole, Italy, 2023. [Google Scholar]
- Esparza, Á.; Ebbs, M.; Gauthier, J.F. Application of Remote Sensing Techniques to Detect Methane Emissions from the Oil and Gas Sector to Assist Operators with Sustainability Efforts. In Proceedings of the SPE Annual Technical Conference and Exhibition, Huston, TX, USA, 3–5 October 2022; p. D031S047R002. [Google Scholar]
- Laskar, I.I.; Giang, A. Policy approaches to mitigate in-use methane emissions from natural gas use as a marine fuel. Environ. Res. Infrastruct. Sustain. 2023, 3, 025005. [Google Scholar] [CrossRef]
- Vollrath, C. Methane Emissions from the Global Oil and Gas Industry: A Scoping Review to Characterize Research Trends, Knowledge Gaps, and Priorities. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2022. Available online: https://prism.ucalgary.ca/handle/1880/115218 (accessed on 10 October 2024).
- Cooper, J.; Dubey, L.; Hawkes, A. Methane detection and quantification in the up-stream oil and gas sector: The role of satellites in emissions detection, reconciling and reporting. Environ. Sci. Atmos. 2022, 2, 9–23. [Google Scholar] [CrossRef]
- Marks, L. The abatement cost of methane emissions from natural gas production. J. Assoc. Environ. Resour. Econ. 2022, 9, 165–198. [Google Scholar] [CrossRef]
- Gu, Y.; Dai, J.; Vasarhelyi, M.A. Audit 4.0-based ESG assurance: An example of using satellite images on GHG emissions. Int. J. Account. Inf. Syst. 2023, 50, 100625. [Google Scholar] [CrossRef]
- Qureshi, Z.; King, M.; Nayak, S. Quantifying impact in the environment sector: A greenhouse gas emissions monitoring study. NPL Rep. 2023, 49, 101159. [Google Scholar]
- Chen, B.; Kan, S.; Wang, S.; Deng, H.; Zhang, B. Beyond wells: Towards demand-side perspective to manage global methane emissions from oil and gas production. Resour. Conserv. Recycl. 2023, 193, 106971. [Google Scholar] [CrossRef]
- Elkind, J.; Blanton, E.; Van Der Gon, H.D.; Kleinberg, R.L.; Leemhuis, A. Nowhere to Hide: The Implications of Satellite-Based Methane Detection for Policy, Industry and Finance; Columbia Center on Global Energy Policy: New York, NY, USA, 2020. [Google Scholar]
- Lavoie, M.; MacKay, K.; Stirling, J.; Risk, D. Methane inventories, but not regulatory submissions, show major variations in methane intensity for Canadian oil and gas producers. Clean. Environ. Syst. 2022, 5, 100081. [Google Scholar] [CrossRef]
- Shindell, D.; Sadavarte, P.; Aben, I.; Bredariol, T.d.O.; Dreyfus, G.; Höglund-Isaksson, L.; Poulter, B.; Saunois, M.; Schmidt, G.A.; Szopa, S.; et al. The methane imperative. Front. Sci. 2024, 2, 1349770. [Google Scholar] [CrossRef]
- Evans, P.; Lowe, J.; Newman, D.; Washington, M.; Tao, C.; Bottino, G. The Application of a Parametric Model to Track Methane Emissions from Flares–New Insights from a Global Deployment Programme. In Proceedings of the SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability, Abu Dhabi, United Arab Emirates, 10–12 September 2024. [Google Scholar]
- Joynes, I.; Wittwer, M.; Manolas, Y. Developing a ‘fit for purpose’approach to manag-ing methane emissions. APPEA J. 2023, 63, S399–S403. [Google Scholar] [CrossRef]
- Siao, H.J.; Gau, S.H.; Kuo, J.H.; Li, M.G.; Sun, C.J. Bibliometric analysis of envi-ronmental, social, and governance management research from 2002 to 2021. Sustainability 2022, 14, 16121. [Google Scholar] [CrossRef]
- Yu, W.; Gu, Y.; Dai, J. Industry 4.0-enabled environment, social, and governance re-porting: A case from a Chinese energy company. J. Emerg. Technol. Account. 2023, 20, 245–258. [Google Scholar] [CrossRef]
- Bank, W. Sovereign ESG Database, 2024. Available online: https://esgdata.worldbank.org/?lang=en (accessed on 8 October 2024).
- Bovensmann, H. Quantification of CH 4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–39. [Google Scholar]
- Šandera, J.; Štych, P. Selecting relevant biological variables derived from Sentinel-2 data fore mapping changes from grassland to arable land using random forest classifier. Land 2020, 11, 9. [Google Scholar]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. Glob. Perspect. 2021, 194, 110697. [Google Scholar]
- Mincicova, V.S. Possible medium-term scenarios of dynamics of Russia’s energy resource exports after the economic crisis of 2020. In Current Problems and Ways of Industry Development: Equipment and Technologies; Springer: Cham, Swizterland, 2021; pp. 840–848. [Google Scholar]
- Li, F.; Yang, C.; Li, Z.; Failler, P. Does geopolitics have an impact on energy trade? Empirical research on emerging countries. Sustainability 2021, 13, 5199. [Google Scholar] [CrossRef]
- Proskurina, S.; Sikkema, R.; Banja, M.; Vakkilainen, E. How are the EU member states contributing to the biomass target for EU’s renewable energy consumption and environmental impact? In Proceedings of the 28th European Biomass Conference and Exhibition Proceedings, Virtual, 6–9 July 2020; pp. 722–724. [Google Scholar]
- Nelles, M.; Deprie, K.; Jalalipour, H. The role of biogenic wastes and residues in a climate-neutral society: Carbon source, bioenergy and negative emissions. Waste Manag. Res. 2023, 41, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide trends in methods for harvesting and extracting industrial roundwood. Int. J. For. Eng. 2021, 32, 202–215. [Google Scholar] [CrossRef]
- Mishra, A.; Humpenöder, F.; Dietrich, J.P.; Bodirsky, B.L.; Sohngen, B.; Reyer, C.P.O.; Lotze-Campen, H.; Popp, A. Estimating global land system impacts of timber plantations using MAgPIE 4.3.5. Geosci. Model Dev. 2021, 14, 6467–6494. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Davis, S.J.; Zheng, B.; Wang, Y.; Cui, D.; Zhu, B.; Dou, X.; Ke, P.; et al. Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Sci. Data 2020, 7, 392. [Google Scholar] [CrossRef]
- Anisimova, V.Y.; Podbornova, E.S.; Tukavkin, N.M. Energy consumption and energy intensity of the Russian GDP, taking into account the development of the transport network. IOP Conf. Ser. Mater. Sci. Eng. 2020, 918, 012234. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019. Energies 2023, 16, 1927. [Google Scholar] [CrossRef]
- Jones, S.K.; Estrada-Carmona, N.; Juventia, S.D.; Dulloo, M.E.; Laporte, M.A.; Villani, C.; Remans, R. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2021, 2, 712–723. [Google Scholar] [CrossRef]
- Gedik, M.A.; Günel, T. The impact of climate change on edible food production: A panel data analysis. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 318–323. [Google Scholar]
- Kassebaum, N.J.; Bertozzi-Villa, A.; Coggeshall, M.S.; A Shackelford, K.; Steiner, C.; Heuton, K.R.; Gonzalez-Medina, D.; Barber, R.; Huynh, C.; Dicker, D.; et al. Global, regional, and national levels and causes of maternal mortality during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 980–1004. [Google Scholar] [CrossRef]
- Melaku, Y.A.; Gill, T.K.; Taylor, A.W.; Appleton, S.L.; Gonzalez-Chica, D.; Adams, R.; Achoki, T.; Shi, Z.; Renzaho, A. Trends of mortality attributable to child and maternal undernutrition, over-weight/obesity and dietary risk factors of non-communicable diseases in sub-Saharan Africa, 1990–2015: Findings from the Global Burden of Disease Study 2015. Public Health Nutr. 2019, 22, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Leigh, I.; Montes, J.; Smith, C.L. Caregiving for Children and Parental Labor Force Participation During the Pandemic; Board of Governors of the Federal Reserve System (US): Washington, DC, USA, 2021.
- Espi-Sanchis, G.; Leibbrandt, M.; Ranchhod, V. Age, employment and labour force participation outcomes in COVID-era South Africa. Dev. South. Afr. 2022, 39, 664–688. [Google Scholar] [CrossRef]
- Aheto, J.M.K.; Yankson, R.; Chipeta, M.G. Geostatistical analysis and mapping: Social and environmental determinants of under-five child mortality, evidence from the 2014 Ghana demographic and health survey. BMC Public Health 2020, 20, E347–E355. [Google Scholar] [CrossRef]
- Tessema, Z.T.; Tebeje, T.M.; Gebrehewet, L.G. Geographic variation and factors associated with under-five mortality in Ethiopia. A spatial and multilevel analysis of Ethiopian mini demographic and health survey 2019. PLoS ONE 2022, 17, e02755. [Google Scholar] [CrossRef]
- Kasimovskaya, N.; Egorova, E.; Shustikova, N.; Poleshchuk, I.; Khvostunov, K.; Malkina, O.; Ermilova, V. Development of healthcare and social care services for the elderly population. J. Comp. Eff. Res. 2022, 11, 1263–1276. [Google Scholar] [CrossRef]
- Shuba, M.N.; Frolova, V.R. The population aging in the European Union: Features and socioeconomic consequences. Bus. Inf. 2022, 7, 11–17. [Google Scholar] [CrossRef]
- Piantanida, E.; Gallo, D.; Tanda, M.L. Liraglutide is an effective drug for the treatment of obesity also in real life. J. Endocrinol. Investig. 2020, 43, 1827–1828. [Google Scholar] [CrossRef]
- Schienkiewitz, A.; Kuhnert, R.; Blume, M.; Mensink, G.B. Overweight and obesity among adults in Germany–results from GEDA 2019/2020-EHIS. J. Health Monit. 2022, 7, 21–28. [Google Scholar]
- Gallant, J.; Kroft, K.; Lange, F.; Notowidigdo, M.J. Temporary Unemployment and Labor Market Dynamics During the COVID-19 Recession (No. w27924); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Davidescu, A.A.; Apostu, S.A.; Stoica, L.A. Socioeconomic effects of COVID-19 pandemic: Exploring uncertainty in the forecast of the Romanian unemployment rate for the period 2020–2023. Sustainability 2021, 13, 7078. [Google Scholar] [CrossRef]
- Zhang, M.; Bhattacharjee, B. Challenges Prevailing in Bangladesh Civil Service: A Brief Analysis. Public Adm. Res. 2023, 12, 1–59. [Google Scholar] [CrossRef]
- Jordan, R.P.; Caotivo, J.M. Fractal Analysis of Gross Domestic Expenditures on Research and Development (R&D) Worldwide. Cogniz. J. Multidiscip. Stud. 2023, 3, 388–391. [Google Scholar]
- Kalin, F. R&D Expenditures and Economic Growth: A Panel Data Analysis For Selected Developing Economies. Ind. Policy 2023, 3, 39–46. [Google Scholar]
- González, F. Creditor rights and entrepreneurship: Evidence from legal changes. Int. Rev. Econ. Financ. 2021, 75, 278–299. [Google Scholar] [CrossRef]
- Simiyu, M.A. Freedom of expression and African elections: Mitigating the insidious effect of emerging approaches to addressing the false news threat. Afr. Hum. Rights Law J. 2022, 22, 76–107. [Google Scholar] [CrossRef]
- Michel, D. The Impact of E-Government on Governance in the Case of ASIA Countries in 2020. West Sci. Interdiscip. Stud. 2023, 1, 539–551. [Google Scholar] [CrossRef]
- Duxbury, S.W. A general panel model for unobserved time heterogeneity with application to the politics of mass incarceration. Sociol. Methodol. 2021, 51, 348–377. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, W. Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects. Metrika 2022, 85, 93–114. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z. Spatial dynamic panel data models with correlated random effects. J. Econom. 2021, 221, 424–454. [Google Scholar] [CrossRef]
- Guo, J.; Qu, X. Fixed effects spatial panel data models with time-varying spatial dependence. Econ. Lett. 2020, 196, 109531. [Google Scholar] [CrossRef]
- Hill, T.D.; Davis, A.P.; Roos, J.M.; French, M.T. Limitations of fixed-effects models for panel data. Sociol. Perspect. 2020, 63, 357–369. [Google Scholar] [CrossRef]
- Mugnier, M. A simple and computationally trivial estimator for grouped fixed effects models. arXiv 2022, arXiv:2203.08879. [Google Scholar]
- Bechtel, G.G. Panel regression of arbitrarily distributed responses. J. Data Sci. 2009, 7, 255–266. [Google Scholar] [CrossRef]
- Ani, C.L.; Mashood, L.O.; Anche, J.Y.; Adikwu, S.; Aderupatan, D.E.; Bart, M.G. Crypto Assets Indicators and their Effect on the Market Capitalization: A Panel Data Analysis. Kasu J. Comput. Sci. 2024, 1, 200–217. [Google Scholar] [CrossRef]
- Zafar, Z.; Aslam, M. An adaptive weighted least squares ratio approach for estimation of heteroscedastic linear regression model in the presence of outliers. Commun. Stat. Simul. Comput. 2023, 52, 2365–2375. [Google Scholar] [CrossRef]
- Virgantari, F.; Widyastiti, M.; Seno, N.I. Comparison of Weights in Weighted Least Square Method for Handling Heteroscedasticity on Multiple Regression Model. Int. J. Math. Stat. Comput. 2024, 2, 60–67. [Google Scholar] [CrossRef]
- Mondiana, Y.Q.; Pramoedyo, H.; Iriany, A. Applied fixed effect of Geographically Weighted Panel Regression (GWPR) with M-Estimator approach to estimate sugarcane yield data in East Java. J. Appl. Nat. Sci. 2024, 16, 646–652. [Google Scholar] [CrossRef]
- Pérez-Barbería, F.J.; Mayes, R.W.; Giráldez, J.; Sánchez-Pérez, D. Ericaceous species reduce methane emissions in sheep and red deer: Respiration chamber measurements and predictions at the scale of European heathlands. Sci. Total Environ. 2020, 714, 136738. [Google Scholar] [CrossRef]
- Filho, N.M.L.; Cardoso, A.d.S.; de Azevedo, J.C.; Macedo, V.H.M.; Domingues, F.N.; Faturi, C.; da Silva, T.C.; Ruggieri, A.C.; Reis, R.A.; Rêgo, A.C.D. How does land use change affect the methane emission of soil in the Eastern Amazon? Front. Environ. Sci. 2023, 11, 1244152. [Google Scholar]
- Huang, M.; Gu, C.; Bai, Y. Effect of Fertilization on Methane and Nitrous Oxide Emissions and Global Warming Potential on Agricultural Land in China: A Meta-Analysis. Agriculture 2023, 14, 34. [Google Scholar] [CrossRef]
- Höglund-Isaksson, L.; Gómez-Sanabria, A.; Klimont, Z.; Rafaj, P.; Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe–results from the GAINS model. Environ. Res. Commun. 2020, 2, 025004. [Google Scholar] [CrossRef]
- McNorton, J.; Bousserez, N.; Agustí-Panareda, A.; Balsamo, G.; Cantarello, L.; Engelen, R.; Huijnen, V.; Inness, A.; Kipling, Z.; Ribas, R.; et al. Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion. Atmos. Chem. Phys. 2022, 22, 5961–5981. [Google Scholar] [CrossRef]
- Gu, A.; Zhou, S.; Xu, S.; Tong, Q. Energy industry methane emissions trajectory analysis in China until 2050. Atmosphere 2022, 13, 1989. [Google Scholar] [CrossRef]
- Sikirica, A.; Theis, N.; Betancourt, M. Conflicting outcomes of alternative energies: Agricultural methane emissions and hydroelectricity, 1975–2015. Environ. Res. Clim. 2022, 1, 025005. [Google Scholar] [CrossRef]
- Pignataro, V.; Liponi, A.; Bargiacchi, E.; Ferrari, L. Impact of management strategy on green methane production from wind energy. E3S Web Conf. 2023, 414, 01005. [Google Scholar] [CrossRef]
- Deshmukh, C.S.; Julius, D.; Evans, C.D.; Nardi, S.A.P.; Page, S.E.; Gauci, V.; Laurén, A.; Sabiham, F.; Agus, F.; Desai, A.R.; et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Chang. Biol. 2020, 26, 2477–2495. [Google Scholar] [CrossRef]
- Aini, F.K.; Hergoualc’h, K.; Smith, J.U.; Verchot, L.; Martius, C. How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes? Ecosphere 2020, 11, e03284. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Zazzeri, G.; et al. Methane mitigation: Methods to reduce emissions, on the path to the Paris agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Nunes, L.J. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Ullah, S.; Nadeem, M.; Ali, K.; Abbas, Q. Fossil fuel, industrial growth and inward FDI impact on CO2 emissions in Vietnam: Testing the EKC hypothesis. Manag. Environ. Qual. Int. J. 2022, 33, 222–240. [Google Scholar] [CrossRef]
- Al-Kuwari, O.; Welsby, D.; Rodriguez, B.S.; Pye, S.; Ekins, P. Carbon intensity of oil and gas production. Res. Sq. 2021; preprint. [Google Scholar] [CrossRef]
- Burns, D.; Grubert, E. Attribution of production-stage methane emissions to assess spatial variability in the climate intensity of US natural gas consumption. Environ. Res. Lett. 2021, 16, 044059. [Google Scholar] [CrossRef]
- Tarazkar, M.H.; Dehbidi, N.K.; Ansari, R.A.; Pourghasemi, H.R. Factors affecting methane emissions in OPEC member countries: Does the agricultural production matter? Environ. Dev. Sustain. 2021, 23, 6734–6748. [Google Scholar] [CrossRef]
- Mrówczyńska-Kamińska, A.; Bajan, B.; Pawłowski, K.P.; Genstwa, N.; Zmyślona, J. Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE 2021, 16, e250995. [Google Scholar] [CrossRef]
- Singh, A.; Kuttippurath, J.; Abbhishek, K.; Mallick, N.; Raj, S.; Chander, G.; Dixit, S. Biogenic link to the recent increase in atmospheric methane over India. J. Environ. Manag. 2021, 289, 112526. [Google Scholar] [CrossRef]
- Anser, M.K.; Islam, T.; Khan, M.A.; Zaman, K.; Nassani, A.A.; Askar, S.E.; Abro, M.M.Q.; Kabbani, A. Identifying the potential causes, consequences, and prevention of communicable diseases (including COVID-19). BioMed Res. Int. 2020, 2020, 8894006. [Google Scholar] [CrossRef]
- Karn, M.; Sharma, M. Climate change, natural calamities and the triple burden of disease. Nat. Clim. Chang. 2021, 11, 796–797. [Google Scholar] [CrossRef]
- Gori, L.; Mammana, C.; Manfredi, P.; Michetti, E. Economic development with deadly communicable diseases and public prevention. J. Public Econ. Theory 2022, 24, 912–943. [Google Scholar] [CrossRef]
- Sakamoto, L.S.; Berndt, A.; Pedroso, A.D.F.; Lemes, A.P.; Azenha, M.V.; Alves, T.C.; Rodrigues, P.H.M.; Corte, R.R.; Leme, P.R.; Oliveira, P.P. Pasture intensification in beef cattle production can affect methane emission intensity. J. Anim. Sci. 2020, 98, skaa309. [Google Scholar] [CrossRef]
- Chandra, N.; Patra, P.K.; Bisht, J.S.; Ito, A.; Umezawa, T.; Saigusa, N.; Morimoto, S.; Aoki, S.; Janssens-Maenhout, G.; Canadell, J.G.; et al. Emissions from the oil and gas sectors, coal mining and ruminant farming drive methane growth over the past three decades. J. Meteorol. Soc. Jpn. 2021, 99, 309–337. [Google Scholar] [CrossRef]
- Bakkaloglu, S.; Lowry, D.; Fisher, R.; France, J.; Brunner, D.; Chen, H.; Nisbet, E. Quantification of methane emissions from UK biogas plants. Waste Manag. 2021, 124, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Cardona, M.; Millward, J.; Gemmill, A.; Yoo, K.J.; Bishai, D.M. Estimated impact of the 2020 economic downturn on under-5 mortality for 129 countries. PLoS ONE 2022, 17, e0263245. [Google Scholar] [CrossRef] [PubMed]
- Sasmoko; Shabnam; Handayani, W.; Nassani, A.A.; Haffar, M.; Zaman, K. Do precarious female employment and political autonomy affect the under-5 mortality rate? Evidence from 166 countries. PLoS ONE 2022, 17, e0269575. [Google Scholar] [CrossRef]
- Suerungruang, S.; Sornlorm, K.; Laohasiriwong, W.; Mahato, R. Spatial association and modelling of under-5 mortality in Thailand, 2020. Geospat. Health 2023, 18, 2. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Parker, R.J.; Lunt, M.F.; Bösch, H. Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmos. Chem. Phys. 2023, 23, 4863–4880. [Google Scholar] [CrossRef]
- Drinkwater, A.; Palmer, P.I.; Feng, L.; Arnold, T.; Lan, X.; Michel, S.E.; Parker, R.; Boesch, H. Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions. Atmos. Chem. Phys. 2023, 23, 8429–8452. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Tian, T.; Pan, D.; Zhang, J.X.; Xie, W.; Wang, S.K.; Xia, H.; Dai, Y.; Sun, G. The relationship between dietary patterns and overweight and obesity among adult in Jiangsu Province of China: A structural equation model. BMC Public Health 2021, 21, 1225. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, S.; Martinez-Tapia, B.; González-Castell, D.; Cuevas-Nasu, L.; Shamah-Levy, T. Westernized and diverse dietary patterns are associated with overweight-obesity and abdominal obesity in Mexican adult men. Front. Nutr. 2022, 9, 891609. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.D.; Jian, W.X.; Sun, X.M.; Zhao, L.; Wang, H.J.; Zhuoma, C.Z.M.; Wang, Y.X.; Xu, Z.H.; Peng, W.; et al. Prevalence of obesity and its association with dietary patterns: A cohort study among Tibetan pastoralists in Qinghai Province. Zhonghua Liu Xing Bing Xue Za Zhi 2023, 44, 1257–1263. [Google Scholar]
- Rutherford, J.S.; Sherwin, E.D.; Ravikumar, A.P.; Heath, G.A.; Englander, J.; Cooley, D.; Lyon, D.; Omara, M.; Langfitt, Q.; Brandt, A.R.; et al. Closing the methane gap in US oil and natural gas production emissions inventories. Nat. Commun. 2021, 12, 4715. [Google Scholar] [CrossRef] [PubMed]
- Adeel-Farooq, R.M.; Raji, J.O.; Adeleye, B.N. Economic growth and methane emission: Testing the EKC hypothesis in ASEAN economies. Manag. Environ. Qual. Int. J. 2021, 32, 277–289. [Google Scholar] [CrossRef]
- Kleinberg, R. Methane emission controls: Toward more effective regulation. SSRN 2021. [Google Scholar] [CrossRef]
- Bletsas, K.; Oikonomou, G.; Panagiotidis, M.; Spyromitros, E. Carbon dioxide and greenhouse gas emissions: The role of monetary policy, fiscal policy, and institutional quality. Energies 2022, 15, 4733. [Google Scholar] [CrossRef]
- Liang, Y. Analysis and Enlightenment of Methane Emission Reduction Control in Oil and Gas Industry. Acad. J. Sci. Technol. 2022, 4, 47–50. [Google Scholar] [CrossRef]
- Petrović, P.; Lobanov, M.M. The impact of R&D expenditures on CO2 emissions: Evidence from sixteen OECD countries. J. Clean. Prod. 2020, 248, 119187. [Google Scholar]
- Lauvaux, T.; Giron, C.; Mazzolini, M.; D’aspremont, A.; Duren, R.; Cusworth, D.; Shindell, D.; Ciais, P. Global assessment of oil and gas methane ultra-emitters. Science 2022, 375, 557–561. [Google Scholar] [CrossRef]
- Baldos, U.L.C. Impacts of US Public R&D Investments on Agricultural Productivity and GHG Emissions. J. Agric. Appl. Econ. 2023, 55, 536–550. [Google Scholar]
- Ronaghi, M.; Reed, M.; Saghaian, S. The impact of economic factors and governance on greenhouse gas emission. Environ. Econ. Policy Stud. 2020, 22, 153–172. [Google Scholar] [CrossRef]
- Szymczyk, K.; Şahin, D.; Bağcı, H.; Kaygın, C.Y. The effect of energy usage, economic growth, and financial development on CO2 emission management: An analysis of OECD countries with a High environmental performance index. Energies 2021, 14, 4671. [Google Scholar] [CrossRef]
- Ruza, C.; Caro-Carretero, R. The non-linear impact of financial development on environmental quality and sustainability: Evidence from G7 countries. Int. J. Environ. Res. Public Health 2022, 19, 8382. [Google Scholar] [CrossRef]
- Güngör, H.; Olanipekun, I.O.; Usman, O. Testing the environmental Kuznets curve hypothesis: The role of energy consumption and democratic accountability. Environ. Sci. Pollut. Res. 2021, 28, 1464–1478. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, M.; Neagu, O.; Gavurova, B. The role of quality of governance in reducing pollution in Romania: An ARDL and nonparametric bayesian approach. Front. Environ. Sci. 2022, 10, 892243. [Google Scholar] [CrossRef]
- Sadaoui, N.; Zabat, L.; Sekrafi, H.; Abid, M. The moderating role of natural resources between governance and CO2 emissions: Evidence from MENA countries. Energy Environ. 2024, 35, 1597–1615. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Ham-burg, S.P. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- Tanaka, K.; Tibrewal, K.; Ciais, P.; Boucher, O. Aligning long-term climate mitigation with enhanced methane action. arXiv 2024, arXiv:2402.04749. [Google Scholar]
Macrocategory | Variable | Acronym | Description |
---|---|---|---|
Methane Emissions (kt of CO2 equivalent) | METHANE | Anthropogenic methane emissions refer to those CH4 releases to the atmosphere resulting from human activities including agriculture, landfills, and fossil fuel systems. Emissions are expressed in kt CO2 equivalent, using a 28–34 times higher global warming effect of methane compared to CO2 over 100 years [3,53]. | |
E-Environment | Agricultural land (% of land area) | AL | Agricultural land includes land area used for arable land, permanent crops, and permanent pastures. Arable land comprises land for temporary crops and pastures, while permanent crops include land for cocoa, coffee, etc., that do not require replanting. It is measured as a percentage of total land area [54,55]. |
Energy imports, net (% of energy use) | EIMP | It is the difference between energy production and its consumption in an economy, with net energy imports accounting for it. This would indicate whether or not the country is a net importer or exporter regarding energy. Oil equivalents are the units of measurements used. A negative value means it is a net exporter of energy [56,57]. | |
Renewable energy consumption (% of total final energy consumption) | REC | Renewable energy consumption refers to the percentage of total final energy use that is accounted for by renewable resources such as wind, solar, hydro, geothermal, and biomass. The generally accepted measure for renewable energy is a proportion of the total energy consumption, usually expressed in percentage [58,59] | |
Adjusted savings: net forest depletion (% of GNI) | NFD | Net forest depletion is the loss of forest resources when the roundwood is harvested at an excess of natural growth, hence an indicator of poor forest management. It is measured as a percentage of Gross National Income, indicating how much value has been lost economically due to over-harvesting [60,61]. | |
CO2 emissions (metric tons per capita) | CO2E | CO2 emissions are particularly produced by the combustion of fossil fuels and cement production, including those using solid, liquid, and gaseous fuels, and gas flaring. Commonly, these emissions are measured as metric tons per capita to track environmental impact and develop strategies for decreasing greenhouse gas emissions [62,63] | |
Energy intensity level of primary energy (MJ/$2017 PPP GDP) | INTENSITY | Primary energy Energy intensity is the amount of energy used in producing one unit of economic output, adjusted for PPP. The usual measurement is megajoules per dollar of GDP, that is in MJ/$2017 PPP GDP [64,65]. | |
Food Production Index (2014–2016 = 100) | FPI | Food Production Index measures the output of crops that are edible and contribute to human nutrition, omitting non-nutritive crops such as coffee and tea. Consequently, the unit of measurement adopted is a relative index, with the base period 2014–2016 set at 100 [66,67]. | |
S-Social | Cause of death, by communicable diseases and maternal, prenatal and nutrition conditions (% of total) | CD | Cause of death refers to the percentage share in the total deaths in all age groups by causes that include communicable diseases, maternal health conditions, congenital anomalies, and nutritional disorders. It is measured in respect to total deaths within the population in percentage form [68,69]. |
Labor force participation rate, total (% of total population ages 15–64) (modeled ILO estimate) | LFPR | Labor force participation rate refers to the percent of the population aged 15–64 which is economically active: either employed or unemployed. It is given as a percentage of the total population of working age [70,71] | |
Mortality rate, under-5 (per 1000 live births) | MR5 | Under-five mortality rate refers to the probability that a newborn baby will die before reaching age five; it reflects the key factors of the quality of healthcare, disease prevention, nutrition, and living conditions. It is expressed as the number of deaths per 1000 live births in a given year [72,73]. | |
Population ages 65 and above (% of total population) | P65 | The population aged 65 and older as a percentage of the total population represents the proportion of people in this age group relative to the entire population. By convention, this indicator is expressed as a percent and is calculated based on the de facto population, which comprehends all persons present on the territory regardless of their legal status or citizenship [74,75]. | |
Prevalence of overweight (% of adults) | PO | Adult obesity prevalence is the percentage of people ages 18 and over with a Body Mass Index of equal to or greater than 30 kg/m2, which is indicative of obesity. For any given height, a calculation of weight in kilograms divided by height in meters squared determines BMI (kg/m2) [76,77]. | |
Unemployment, total (% of total labor force) (modeled ILO estimate) | UT | Unemployment represents the percentage of the labor force that is jobless, actively seeking, and available for work. It is measured as a percentage of the total labor force [78,79]. | |
G-Governance | Government Effectiveness: Estimate | GE | Government effectiveness captures the quality of public services, the quality and independence of the civil service, and the credibility of government commitment to policies and plans. It is a score calculated from a standard normal distribution ranging from approximately −2.5 to 2.5. Higher scores indicate better government performance [80]. |
Research and development expenditure (% of GDP) | RAND | Gross domestic expenditure on R&D refers to the share of a nation’s GDP that goes to research and experimental development, operating costs, and capital spending in business enterprises, government, higher education, and private non-profit organizations. This is measured as a percentage of GDP and reflects the investment in scientific and technological innovation for the nation [81,82]. | |
Strength of legal rights index (0 = weak to 12 = strong) | STRENGHT | The Strength of Legal Rights Index provides a rating with respect to the laws of collateral and bankruptcy that enable borrowers and lenders to make a shift towards easier credit accessibility. Higher scores indicate that the legal environment is more conducive to secured forms of lending. It is measured from 0 to 12 [83]. | |
Voice and Accountability: Estimate | VA | Voice and Accountability measures the extent to which a country’s citizens are able to participate in the political process, exercise freedom of expression, associate freely, and have an independent media. Scores for this dimension normally follow the normal distribution between −2.5 and 2.5, where higher values represent stronger democratic institutions and greater participation of the public [84,85]. |
Variable | Mean | Median | Minimum | Maximum | Std. Dev. | C.V. | Skewness | Ex. Kurtosis | 5% Perc. | 95% Perc. | IQ Range |
---|---|---|---|---|---|---|---|---|---|---|---|
METHANE | 14.517 | 0.81156 | 0.00000 | 27.700 | 28.231 | 19.447 | 52.737 | 33.483 | 0.00000 | 55.828 | 10.607 |
AL | 0.67621 | 0.00000 | 0.00000 | 24.381 | 23.772 | 35.154 | 57.085 | 39.428 | 0.00000 | 44.133 | 0.087963 |
EIMP | 30.572 | 31.102 | 0.00000 | 82.996 | 24.721 | 0.80861 | 0.23903 | −11.598 | 0.00000 | 72.006 | 44.180 |
REC | 32.710 | 13.797 | −16.800 | 33.373 | 47.443 | 14.504 | 25.130 | 82.881 | 0.00000 | 14.479 | 46.178 |
NFD | −63.588 | 0.00000 | −1058.1 | 99.200 | 79.874 | 12.561 | −53.508 | 39.454 | −104.58 | 73.194 | 0.00000 |
CO2E | 37.660 | 0.00000 | −122.88 | 574.79 | 24.451 | 64.926 | 19.319 | 420.87 | 0.00000 | 10.154 | 45.423 |
INTENSITY | 76.605 | 97.280 | 0.00000 | 157.47 | 42.051 | 0.54893 | −11.767 | −0.39229 | 0.00000 | 110.47 | 21.515 |
FPI | 25.208 | 13.066 | 0.00000 | 97.031 | 28.608 | 11.349 | 0.99387 | −0.30793 | 0.00000 | 84.693 | 41.205 |
CD | 40.705 | 0.00000 | −0.23000 | 66.470 | 11.996 | 29.472 | 35.313 | 12.006 | 0.00000 | 33.155 | 0.00000 |
HB | 14.452 | 0.00000 | 0.00000 | 16.460 | 23.521 | 16.276 | 21.097 | 52.668 | 0.00000 | 66.045 | 24.225 |
IL20 | 21.709 | 0.00000 | 0.00000 | 10.500 | 33.087 | 15.241 | 10.524 | −0.55088 | 0.00000 | 88.000 | 52.000 |
LFPR | 56.380 | 66.870 | 0.00000 | 92.170 | 27.265 | 0.48359 | −12.942 | 0.26899 | 0.00000 | 83.498 | 23.780 |
MR5 | 0.11267 | 15.700 | −27013. | 153.20 | 870.85 | 7729.1 | −30.953 | 957.41 | 0.00000 | 97.670 | 37.400 |
PSSS | 35.623 | 24.602 | 0.00000 | 100.00 | 36.399 | 10.218 | 0.49289 | −13.079 | 0.00000 | 98.074 | 70.931 |
P65 | 87.101 | 52.140 | −0.40846 | 214.09 | 15.733 | 18.063 | 10.824 | 135.10 | 0.00000 | 19.759 | 92.438 |
PO | 27.482 | 25.100 | 0.00000 | 88.500 | 26.595 | 0.96775 | 0.27419 | −14.627 | 0.00000 | 65.600 | 55.300 |
UT | 70.469 | 56.150 | 0.00000 | 31.380 | 58.620 | 0.83185 | 12.526 | 14.743 | 0.00000 | 19.224 | 66.300 |
GE | 0.14773 | −0.15046 | −24.751 | 28.200 | 26.665 | 18.050 | 87.700 | 86.714 | −15.556 | 17.611 | 12.681 |
RAND | 0.52954 | 0.00000 | −17.162 | 44.477 | 27.352 | 51.653 | 13.724 | 202.83 | 0.00000 | 22.002 | 0.34966 |
STRENGTH | 53.072 | 20.000 | 0.00000 | 11315. | 699.42 | 13.179 | 15.128 | 229.61 | 0.00000 | 10.000 | 60.000 |
VA | −0.012676 | 0.0020447 | −22.592 | 15.470 | 10.928 | 86.206 | 22.711 | 29.211 | −16.898 | 14.167 | 16.271 |
Model | Constant | NFD | AL | CO2E | EIMP | Intensity | FPI | REC | |
---|---|---|---|---|---|---|---|---|---|
Fixed Effects | Coefficient | 0.062 | 0.190 *** | −0.008 *** | 0.146 *** | −0.001 *** | 0.014 *** | 0.015 *** | −0.007 *** |
Std. Error | 0.057 | 0.027 | 0.002 | 0.014 | 0.000 | 0.001 | 0.001 | 0.002 | |
t-ratio | 1.090 | 6.989 | −2.965 | 10.07 | −3.745 | 10.28 | 8.914 | −2.734 | |
Random Effects | Coefficient | 0.062 | 0.203 *** | −0.009 *** | 0.141 *** | −0.001 *** | 0.0151 *** | 0.015 *** | −0.008 *** |
Std. Error | 0.174 | 0.025 | 0.002 | 0.013 | 0.000 | 0.001 | 0.001 | 0.002 | |
t-ratio | 0.3589 | 7.850 | −3.364 | 10.23 | −4.037 | 10.95 | 9.672 | −3.321 | |
Weighted Least Squares | Coefficient | 0.018 | 0.121 *** | −0.0119 *** | 0.086 *** | −0.002 *** | 0.023 *** | 0.017 *** | −0.010 *** |
Std. Error | 0.014 | 0.009 | 0.000 | 0.004 | 0.000 | 0.002 | 0.000 | 0.000 | |
t-ratio | 1.277 | 12.22 | −25.83 | 21.01 | −8.764 | 11.83 | 49.69 | −23.55 | |
Pooled OLS | Coefficient | 0.105 | 0.244 *** | −0.014 *** | 0.097 *** | −0.004 *** | 0.034 *** | 0.020 *** | −0.018 *** |
Std. Error | 0.112 | 0.025 | 0.002 | 0.014 | 0.000 | 0.002 | 0.002 | 0.002 | |
t-ratio | 0.9339 | 9.414 | −5.004 | 6.779 | −6.124 | 14.47 | 10.28 | −7.000 |
Random Effects | Pooled OLS | Fixed Effects | Weighted Least Squares | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | Std. Error | z | Coefficient | Std. Error | t-Ratio | Coefficient | Std. Error | t-Ratio | Coefficient | Std. Error | t-Ratio |
Constant | −0.162 | 0.233 | −0.696 | 0.284 * | 0.149 | 1.901 | 4.477 *** | 0.629 | 7.114 | 0.147 *** | 0.025 | 5.882 |
CD | −0.017 *** | 0.002 | −6.662 | −0.009 * | 0.004 | −1.852 | −0.016 *** | 0.002 | −6.439 | −0.008 *** | 0.000 | −11.89 |
LFPR | 0.018 *** | 0.001 | 11.66 | 0.008 *** | 0.002 | 4.073 | 0.016 *** | 0.001 | 9.456 | 0.009 *** | 0.000 | 23.63 |
MR5 | −0.0001 *** | 3.861 | −3.516 | −0.0002 *** | 7.227 | −3.563 | −0.0001 *** | 3.79 | −2.882 | −0.000 *** | 0.000 | −3.126 |
P65 | 0.053 *** | 0.009 | 5.512 | 0.065 *** | 0.004 | 16.23 | −0.407 *** | 0.058 | −6.910 | 0.015 *** | 0.003 | 4.998 |
PO | 0.013 *** | 0.001 | 10.16 | 0.014 *** | 0.002 | 6.562 | 0.007 *** | 0.001 | 5.120 | 0.009 *** | 0.000 | 20.01 |
UT | −0.031 * | 0.0166 | −1.906 | −0.037 *** | 0.009 | −3.817 | −0.075 *** | 0.021 | −3.505 | −0.012 *** | 0.001 | −6.854 |
Weighted Least Squares | Random Effects | Pooled OLS | Fixed Effects | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | Std. Error | t-Ratio | Coefficient | Std. Error | z | Coefficient | Std. Error | t-Ratio | Coefficient | Std. Error | t-Ratio |
Costant | −0.0007 *** | 9.841 | −7.624 | 0.008 *** | 0.012 | 0.7176 | −0.009 *** | 0.001 | −4.843 | 0.008 *** | 0.0002 | 40.08 |
GE | −0.002 *** | 0.0002 | −9.498 | −0.021 *** | 0.0002 | −87.28 | −0.0367 *** | 0.001 | −32.30 | −0.021 *** | 0.0002 | −86.74 |
RAND | 0.001 *** | 0.0002 | 5.618 | −0.002 *** | 0.0003 | −6.978 | 0.020 *** | 0.002 | 9.497 | −0.002 *** | 0.0003 | −6.977 |
STRENGHT | 5.425 *** | 7.436 | 7.296 | 6.917 *** | 1.673 | 41.34 | 0.0002 *** | 9.121 | 23.96 | 6.89 *** | 1.682 | 41.00 |
VA | 0.0008 *** | 0.0001 | 6.709 | 0.008 *** | 0.0004 | 20.32 | 0.014 *** | 0.001 | 7.239 | 0.008 *** | 0.0004 | 20.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantiello, A.; Laureti, L.; Quarto, A.; Leogrande, A. Methane Emissions in the ESG Framework at the World Level. Methane 2025, 4, 3. https://doi.org/10.3390/methane4010003
Costantiello A, Laureti L, Quarto A, Leogrande A. Methane Emissions in the ESG Framework at the World Level. Methane. 2025; 4(1):3. https://doi.org/10.3390/methane4010003
Chicago/Turabian StyleCostantiello, Alberto, Lucio Laureti, Angelo Quarto, and Angelo Leogrande. 2025. "Methane Emissions in the ESG Framework at the World Level" Methane 4, no. 1: 3. https://doi.org/10.3390/methane4010003
APA StyleCostantiello, A., Laureti, L., Quarto, A., & Leogrande, A. (2025). Methane Emissions in the ESG Framework at the World Level. Methane, 4(1), 3. https://doi.org/10.3390/methane4010003