Previous Issue
Volume 3, December
 
 

Methane, Volume 4, Issue 1 (March 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
39 pages, 9143 KiB  
Article
Methane Emissions in the ESG Framework at the World Level
by Alberto Costantiello, Lucio Laureti, Angelo Quarto and Angelo Leogrande
Methane 2025, 4(1), 3; https://doi.org/10.3390/methane4010003 - 13 Jan 2025
Viewed by 545
Abstract
Methane is a strong green gas that has higher GWP. Methane emissions, therefore, form one of the critical focuses within climate change mitigation policy. Indeed, the present study represents a very novel analysis of methane emission within the ESG framework by using the [...] Read more.
Methane is a strong green gas that has higher GWP. Methane emissions, therefore, form one of the critical focuses within climate change mitigation policy. Indeed, the present study represents a very novel analysis of methane emission within the ESG framework by using the data across 193 countries within the period of 2011–2020. Methane reduction on account of ESG delivers prompt climate benefits and thereby preserves the core environment, social, and governance objectives. In spite of its importance, the role of methane remains thinly explored within ESG metrics. This study analyzes how factors like renewable energy use, effective governance, and socioeconomic settings influence the emission rate of the study subject, as many previous ESG studies are deficient in considering methane. By using econometric modeling, this research identifies that increasing methane emissions remain unabated with the improvement of ESG performances around the world, particularly within key agricultural and fossil fuel-based industrial sectors. Renewable energy cuts emissions, but energy importation simply transfers the burdens to exporting nations. It therefore involves effective governance and targeted internationational cooperation, as socioeconomic elements act differently in different developed and developing countries to drive various emission sources. These findings strongly call for balanced, targeted strategies to integrate actions of mitigation into ESG goals related to methane abatement. Full article
Show Figures

Figure 1

10 pages, 777 KiB  
Article
Thermodynamic Analysis of the Steam Reforming of Acetone by Gibbs Free Energy (GFE) Minimization
by Joshua O. Ighalo, Faith Uchechukwu Onyema, Victor E. Ojukwu and Johnbosco C. Egbueri
Methane 2025, 4(1), 2; https://doi.org/10.3390/methane4010002 - 13 Jan 2025
Viewed by 460
Abstract
Steam reforming is an important industrial process for hydrogen production. Acetone, the by-product of phenol production from cumene peroxidation, is a useful source of hydrogen due to its availability and low value compared to hydrogen fuel. This study aimed to utilize the Gibbs [...] Read more.
Steam reforming is an important industrial process for hydrogen production. Acetone, the by-product of phenol production from cumene peroxidation, is a useful source of hydrogen due to its availability and low value compared to hydrogen fuel. This study aimed to utilize the Gibbs free energy minimization method using the Soave–Redlich–Kwong (SRK) equation of state (EOS) to conduct a thermodynamic analysis of the steam reforming process for pure component acetone. The steam reforming process is temperature dependent, with increasing temperatures leading to higher hydrogen production. Competing reactions, particularly the exothermic reverse water–gas shift, impact hydrogen yields beyond 650 °C. The study identified 600 °C as the optimum temperature to strike a balance between maximizing hydrogen production and minimizing the reverse water–gas shift’s impact. The optimal hydrogen yield (70 mol%) was achieved at a steam-to-oil ratio (STOR) of 12. High STOR values shift the equilibrium of the water–gas shift reaction towards hydrogen production due to increased steam, effectively consuming acetone and favoring the desired product. Atmospheric pressure is optimum for hydrogen production because the equilibrium of gas phase reactions shifts in favor of the lighter components at lower pressures. Full article
Show Figures

Figure 1

9 pages, 295 KiB  
Article
Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data
by Adriaan M. H. van der Veen
Methane 2025, 4(1), 1; https://doi.org/10.3390/methane4010001 - 25 Dec 2024
Viewed by 356
Abstract
The evaluation of measurement uncertainty of natural gas properties calculated from composition data are an essential aspect of fiscal metering in the trade of natural gas. For conformity assessment, and in gas allocation, it is essential to have a reliable value for the [...] Read more.
The evaluation of measurement uncertainty of natural gas properties calculated from composition data are an essential aspect of fiscal metering in the trade of natural gas. For conformity assessment, and in gas allocation, it is essential to have a reliable value for the uncertainty. This need is also reflected in, e.g., ISO 6976, the standard for computing natural gas properties, which follows the requirements of the “Guide to the expression of uncertainty in measurement” much more closely. Normalised compositions and their associated standard uncertainties do not suffice for this purpose. A novel algorithm is provided to recover these correlations from the normalised fractions and associated standard uncertainties, enabling the industry work with the data already stored in their repositories. The standard uncertainties are reproduced within 2%, which is acceptable for uncertainty calculations. The correlation coefficients obtained from the recovery algorithm agree with the ones obtained by normalisation. Full article
Previous Issue
Back to TopTop