Multi-Scale Analysis of Lyme Disease Ecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Lyme Disease Incidence Rates
2.1.2. Species Presence
2.1.3. Descriptive Statistics and Data Management
2.2. Analyses
2.2.1. K-Means Clustering
2.2.2. Random Forest Model
2.2.3. Multinomial Logistic Regression Analysis
3. Results
3.1. National Analysis
3.1.1. Descriptive Statistics
3.1.2. K-Means Clustering
3.1.3. Random Forest
3.1.4. Multinomial Regression Analysis
3.2. Regional Analysis
3.2.1. Descriptive Statistics
3.2.2. K-Means Clustering
3.2.3. Random Forest
3.2.4. Multinomial Logistic Regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Descriptive Statistics
Statistic | All Data | Very Low Incidence | Areas Prone to Lyme Disease |
---|---|---|---|
N | 3141 | 1836 | 398 |
Mean | 8.03 | 1.21 | 57.83 |
Median | 0.42 | 0.61 | 39.04 |
Standard Deviation | 29.07 | 1.55 | 61.82 |
Minimum | 0.00 | 0.01 | 8.54 |
Maximum | 641.17 | 8.42 | 641.17 |
Nation | Alaska | Midcontinent | Northeast | Northwest and Pacific Islands | Rocky Mountains | Southeast | Southwest | |
---|---|---|---|---|---|---|---|---|
N | 3141 | 27 | 897 | 554 | 124 | 149 | 1300 | 90 |
Mean | 8.03 | 1.15 | 8.99 | 29.05 | 0.54 | 0.12 | 0.69 | 0.74 |
Median | 0.42 | 0.00 | 0.60 | 6.86 | 0.30 | 0.00 | 0.24 | 0.29 |
Standard Deviation | 29.07 | 2.69 | 27.66 | 54.17 | 0.73 | 0.35 | 2.12 | 1.26 |
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum | 641.17 | 13.44 | 260.77 | 641.17 | 4.10 | 2.88 | 44.57 | 6.54 |
Appendix B
Appendix C
Appendix D
References
- Centers for Disease Control and Prevention. Overview of Tickborne Diseases. Centers for Disease Control and Prevention. 2018. Available online: https://www.cdc.gov/ticks/tickbornediseases/overview.html (accessed on 10 April 2024).
- Arahal, D.R.; Bull, C.T.; Busse, H.; Chuvochina, M.; Dedys, S.N.; Fournier, P.E.; Konstantinidis, K.T.; Parker, C.T.; Rossello-Mora, R.; Ventosa, A. Judicial Opinions 123–127. Int. J. Syst. Evol. Microbiol. 2022, 72, 005708. [Google Scholar] [CrossRef] [PubMed]
- Voordouw, M.J.; Lachish, S.; Dolan, M.C. The Lyme disease pathogen has no effect on the survival of its rodent reservoir host. PLoS ONE 2015, 10, e0118265. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Aenishaenslin, C.; Rees, E.E.; Koffi, J.K.; Pelcat, Y.; Ripoche, M.; Milord, F.; Lindsay, L.R.; Ogden, N.H.; Leighton, P.A. Integrated social-behavioral and ecological risk maps to prioritize public health responses to Lyme disease. Environ. Health Perspect. 2018, 126, 047008. [Google Scholar] [CrossRef]
- Gomes-Solecki, M.; Arnaboldi, P.M.; Backenson, P.B.; Benach, J.L.; Cooper, C.L.; Dattwyler, R.J.; Diuk-Wasser, M.; Fikrig, E.; Hovius, J.W.; Laegreid, W.; et al. Protective Immunity and New Vaccines for Lyme Disease. Clin. Infect. Dis. 2020, 70, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Fessenden, J. FDA Approves Investigational New Drug Application for Lyme PrEP, a Pre-Exposure Prophylaxis to Prevent Lyme Disease. UMASS Chan Medical School News, 24 February 2021. Available online: https://www.umassmed.edu/news/news-archives/2021/02/preventative-shot-for-lyme-disease-developed-at-umass-medical-school-enters-clinical-trial/ (accessed on 15 August 2021).
- Cross, M.L.; Buddle, B.M.; Aldwell, F.E. The potential of oral vaccines for disease control in wildlife species. Vet. J. 2007, 174, 472–480. [Google Scholar] [CrossRef]
- Van Buskirk, J.; Ostfeld, R.S. Controlling Lyme disease by modifying the density and species composition of Tick hosts. Ecol. Appl. 1995, 5, 1133–1140. [Google Scholar] [CrossRef]
- Artois, M.; Blancou, J.; Dupeyroux, O.; Gilot-Fromont, E. Sustainable control of zoonotic pathogens in wildlife: How to be fair to wild animals? Sci. Tech. Rev. 2011, 30, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.C.; Stafford, K.C., III; Molaei, G.; Linske, M.A. Integrated control of nymphal Ixodes scapularis: Effectiveness of white-tailed deer reduction, the entomopathogenic fungus Metarhizium anisopliae, and Fipronil-based rodent bait boxes. Vector-Borne Zoonotic Dis. 2018, 18, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Mowry, S.; Bremer, W.; Duerr, S.; Evans, A.S.; Fischhoff, I.R.; Hinckley, A.F.; Hook, S.A.; Keating, F.; Pendleton, J.; et al. Effects of tick-control interventions on tick abundance, human encounters with ticks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 2022, 28, 957–966. [Google Scholar] [CrossRef]
- Ozdenerol, E. GIS and remote sensing use in the exploration of Lyme disease epidemiology. Int. J. Environ. Res. Public Health 2015, 12, 15181–15203. [Google Scholar] [CrossRef]
- Salomon, J.; Lawrence, A.; Crews, A.; Sambado, S.; Swei, A. Host infection and community composition predict vector burden. Oecologia 2021, 196, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Millins, C.; Leo, W.; MacInnes, I.; Ferguson, J.; Charlesworth, G.; Nayar, D.; Davison, R.; Yardley, J.; Kilbride, E.; Huntley, S.; et al. Emergence of Lyme disease on treeless islands, Scotland, United Kingdom. Emerg. Infect. Dis. 2021, 27, 538–546. [Google Scholar] [CrossRef]
- Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, S.; Buckley, F.G. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 2005, 42, 445–449. [Google Scholar] [CrossRef]
- Rand, P.W.; Lubelczyk, C.; Holman, M.S.; Lacombe, E.H.; Smith, R.P. Abundance of Ixodes scapularis (Acari: Ixodidae) after the complete removal of deer from an isolated offshore island, endemic for Lyme disease. J. Med. Entomol. 2004, 41, 779–784. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.O.; Cook, J.A. Recent Mammals of Alaska; University of Alaska Press: Fairbanks, AK, USA, 2010; p. 399. [Google Scholar]
- Learm, J.; Chapman, B.R.; Ford, W.M. Star-nosed mole: Condylura cristata. In The Land Manager’s Guide to Mammals of the South; Trani, M.K., Ford, W.M., Brian, R., Eds.; Forest Service, United States Department of Agriculture: Washington, DC, USA, 2007; pp. 113–116. [Google Scholar]
- Getz, L.L. Notes on the local distribution of Peromyscus leucopus and Zapus hudsonius. Am. Midl. Nat. 1961, 65, 486–500. [Google Scholar] [CrossRef]
- Ozdenerol, E.; Bingham-Byrne, R.M.; Seboly, J.D. The Effects of Lifestyle on the Risk of Lyme Disease in the United States: Evaluation of Market Segmentation Systems in Prevention and Control Strategies. Int. J. Environ. Res Public Health 2021, 18, 12883. [Google Scholar] [CrossRef]
- Adler, G.H.; Wilson, M.L. Demography of a habitat generalist, the white-footed mouse, in a heterogeneous environment. Ecology 1987, 68, 1785–1796. [Google Scholar] [CrossRef]
- Andstedt, E. Development and Evaluation of a Habitat Suitability Model for White-Tailed Deer in an Agricultural Landscape. Master’s Thesis, Minnesota State University, Mankato, MN, USA, 2016. Available online: https://cornerstone.lib.mnsu.edu/cgi/viewcontent.cgi?article=1645&context=etds#:~:text=Development%20and%20Evaluation%20of%20a%20Habitat%20Suitability%20Model,Minnesota%20State%20University%2C%20Mankato%20Mankato%2C%20Minnesota%20July%202016 (accessed on 15 September 2021).
- Kurokawa, C.; Lynn, G.E.; Pedra, J.H.F.; Pal, U.; Narasimhan, S.; Fikrig, E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020, 18, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Jackson, V.L.; Choate, J.R. Dens and den sites of the swift fox, Vulpes velox. Southwest. Nat. 2000, 45, 212–220. [Google Scholar] [CrossRef]
- Ginsberg, H.S.; Hickling, G.J.; Burke, R.L.; Ogden, N.H.; Beati, L.; LeBrun, R.A.; Arsnoe, I.M.; Gerhold, R.; Han, S.; Jackson, K.; et al. Why Lyme disease is common in the northern US, but rare in the south: The roles of host choice, host-seeking behavior, and tick density. PLoS Biol. 2020, 19, e3001066. [Google Scholar] [CrossRef]
- Werden, L.; Barker, I.K.; Bowman, J.; Gonzales, E.K.; Leighton, P.A.; Lindsay, L.R.; Jardine, C.M. Geography, deer, and host biodiversity shape the pattern of Lyme disease emergence in the Thousand Islands Archipelago of Ontario, Canada. PLoS ONE 2014, 9, e85640. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wong, H.; Belanger, P.; Moore, K.; Peterson, M.; Cunningham, J. Analyzing the Correlation between Deer Habitat and the Component of the Risk for Lyme Disease in Eastern Ontario, Canada: A GIS-Based Approach. ISPRS Int. J. Geo-Inf. 2015, 4, 105–123. [Google Scholar] [CrossRef]
- Morshed, M.G.; Scott, J.D.; Fernando, K.; Beati, L.; Mazerolle, D.F.; Geddes, G.; Durden, L.A. Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme disease spirochete, Borrelia burgdorferi, from the avian tick, Ixodes auritulus. J. Parasitol. 2005, 91, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Gulia-Nuss, M.; Nuss, A.; Meyer, J.M.; Sonenshine, D.E.; Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; de la Fuente, J.; Ribeiro, J.M.; Megy, K.; et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016, 7, 10507. [Google Scholar] [CrossRef]
Mammal Species | Estimate |
---|---|
Myodes gapperi (southern red-backed vole) | −1.462 |
Condylura cristata (start-nosed mole) | −2.116 |
Vulpes velox (swift fox) | 1.766 |
Sorex palustris (American water shrew) | −1.235 |
Peromyscus leucopus (white-footed mouse) | −1.352 |
Odocoileus virginianus (white-tailed deer) | −0.305 |
Alaska | Midcontinent | Northeast | Northwest and Pacific Islands | Rocky Mountains | Southeast | Southwest | |
---|---|---|---|---|---|---|---|
N | 27 | 897 | 554 | 124 | 149 | 1300 | 90 |
No Risk | 14 (51.85%) | 244 (27.20%) | 50 (9.02%) | 39 (31.45%) | 100 (67.11%) | 451 (34.69%) | 9 (10.00%) |
Very Low Risk | 2 (7.41%) | 542 (60.42%) | 470 (84.83%) | 69 (55.64%) | 42 (28.19%) | 760 (58.46%) | 54 (60.00%) |
Low Risk | 7 (37.03%) | 52 (5.80%) | 14 (2.53%) | 3 (2.42%) | 2 (1.34%) | 80 (6.15%) | 12 (13.33%) |
Medium Risk | 1 (3.70%) | 38 (4.24%) | 15 (2.71%) | 6 (4.84%) | 1 (0.67%) | 1 (<0.01%) | 3 (3.33%) |
High Risk | 1 (3.70%) | 16 (1.78%) | 4 (0.72%) | 2 (1.61%) | 1 (0.67%) | 6 (0.46%) | 1 (1.11%) |
Very High Risk | 2 (7.41%) | 5 (0.11%) | 1 (0.18%) | 5 (4.03%) | 3 (2.01%) | 2 (0.15%) | 11 (12.22%) |
Model | Number of Species Used in the Model | Cross-Validation Score (Training Data) | Cross-Validation Score (Test Data) |
---|---|---|---|
Alaska | 0 | N/A * | N/A * |
Midcontinent | 163 | 72.56% | 64.86% |
Northeast | 88 | 84.88% | 84.70% |
Northwest and Pacific Islands | 180 | 48.42% | 56.00% |
Rocky Mountains | 213 | 66.67% | 69.33% |
Southeast | 217 | 67.73% | 60.59% |
Southwest | 279 | 59.90% | 61.67% |
Model | Species | Mammal Size |
---|---|---|
Alaska | N/A * | N/A * |
Midcontinent | Marmota monax | medium terrestrial |
Cynomys ludovicianus | small terrestrial | |
Lynx canadensis | large terrestrial | |
Microtus pinetorum | small terrestrial | |
Sorex arcticus | small terrestrial | |
Peromyscus leucopus | small terrestrial | |
Northeast | Microtus ochrogaster | small terrestrial |
Condylura cristata | small terrestrial | |
Myotis sodalis | small aerial | |
Peromyscus leucopus | small terrestrial | |
Northwest and Pacific Islands | Sorex benderii | small terrestrial |
Odocoileus virginanus | large terrestrial | |
Rocky Mountains | Equus caballus | large terrestrial |
Sorex preblei | small terrestrial | |
Microtus mogollonensis | small terrestrial | |
Euderma maculatum | small aerial | |
Zapus hudsonius | small terrestrial | |
Neotoma mexicana | small terrestrial | |
Urocitellus armatus | small terrestrial | |
Peromyscus leucopus | small terrestrial | |
Vulpes macrotis | small terrestrial | |
Notiosorex crawfordi | small terrestrial | |
Xerospermophilus spilosoma | small terrestrial | |
Dipodomys merriami | small terrestrial | |
Lasiurus blossevillii | small aerial | |
Tamiasciurus hudsonicus | small terrestrial | |
Tamias rufus | small terrestrial | |
Onychomus torridus | small terrestrial | |
Odocoileus virginanus | large terrestrial | |
Southeast | Myotis lucifugus | small aerial |
Zapus hudsonius | small terrestrial | |
Microtus pennsylvanicus | small terrestrial | |
Blarina hylophaga | small terrestrial | |
Trichechus manatus | large aquatic | |
Tadarida brasiliensis | small aerial | |
Neotoma floridana | small terrestrial | |
Spilogale putorius | small terrestrial | |
Perognathus flavescens | small terrestrial | |
Myotis septentrionalis | small aerial | |
Peromyscus leucopus | small terrestrial | |
Southwest | Rattus rattus | small terrestrial |
Aplodontia rufa | medium terrestrial | |
Dipodomys heermanni | small terrestrial | |
Microtus californicus | small terrestrial | |
Microtus longicaudus | small terrestrial | |
Tamias amoenus celeris | small terrestrial | |
Dipodomys deserti | small terrestrial | |
Sorex vagrans | small terrestrial | |
Sylvilagus audubonii | small terrestrial | |
Ochotona princeps | small terrestrial | |
Neotoma macrotis | small terrestrial | |
Peromyscus leucopus | small terrestrial |
Model | Cross-Validation Score (Training Data) | Cross-Validation Score (Test Data) |
---|---|---|
Alaska | N/A * | N/A * |
Midcontinent | 72.98% | 69.87% |
Northeast | 84.88% | 84.70% |
Northwest and Pacific Islands | 61.68% | 72.00% |
Rocky Mountains | 65.83% | 54.67% |
Southeast | 66.67% | 62.17% |
Southwest | 58.67% | 56.67% |
Region | Regional Cluster | Errors | Accuracies |
---|---|---|---|
Alaska | N/A * | N/A * | N/A * |
Midcontinent | No risk | 17 | 32 |
Very low risk | 17 | 91 | |
Low risk | 10 | 0 | |
Medium risk | 0 | 8 | |
High risk | 3 | 0 | |
Very high risk | 1 | 0 | |
Northeast | No risk | 10 | 0 |
Very low risk | 0 | 94 | |
Low risk | 3 | 0 | |
Medium risk | 3 | 0 | |
High risk | 1 | 0 | |
Very high risk | 0 | 0 | |
Northwest and Pacific Islands | No risk | 7 | 1 |
Very low risk | 2 | 12 | |
Low risk | 1 | 0 | |
Medium risk | 1 | 0 | |
High risk | 0 | 0 | |
Very high risk | 1 | 0 | |
Rocky Mountains | No risk | 5 | 15 |
Very low risk | 6 | 2 | |
Low risk | 0 | 0 | |
Medium risk | 0 | 0 | |
High risk | 0 | 0 | |
Very high risk | 1 | 0 | |
Southeast | No risk | 36 | 54 |
Very low risk | 32 | 120 | |
Low risk | 15 | 1 | |
Medium risk | 0 | 0 | |
High risk | 1 | 0 | |
Very high risk | 0 | 0 | |
Southwest | No risk | 1 | 1 |
Very low risk | 0 | 11 | |
Low risk | 2 | 0 | |
Medium risk | 1 | 0 | |
High risk | 0 | 0 | |
Very high risk | 2 | 0 |
Model | Species | Estimate |
---|---|---|
Alaska | N/A * | N/A * |
Midcontinent | Marmota monax | −1.439 |
Cynomys ludovicianus | 1.209 | |
Lynx canadensis | −2.323 | |
Microtus pinetorum | −1.352 | |
Sorex arcticus | −2.381 | |
Peromyscus leucopus | 0.281 | |
Northeast | Microtus ochrogaster | 1.233 |
Condylura cristata | −1.876 | |
Myotis sodalis | −0.131 | |
Peromyscus leucopus | 0.015 | |
Northwest and Pacific Islands | Sorex benderii | −1.229 |
Odocoileus virginanus | −0.745 | |
Rocky Mountains | Equus caballus | −0.332 |
Sorex preblei | −0.695 | |
Microtus mogollonensis | −0.035 | |
Euderma maculatum | 0.076 | |
Zapus hudsonius | −0.135 | |
Neotoma mexicana | 0.458 | |
Urocitellus armatus | −0.652 | |
Peromyscus leucopus | −0.408 | |
Vulpes macrotis | 0.072 | |
Notiosorex crawfordi | 0.591 | |
Xerospermophilus spilosoma | 0.630 | |
Dipodomys merriami | −0.100 | |
Lasiurus blossevillii | 0.149 | |
Tamiasciurus hudsonicus | −0.551 | |
Tamias rufus | −0.007 | |
Onychomus torridus | −0.234 | |
Odocoileus virginanus | −0.055 | |
Southeast | Myotis lucifugus | 0.748 |
Zapus hudsonius | −0.577 | |
Microtus pennsylvanicus | −1.230 | |
Blarina hylophaga | 0.857 | |
Trichechus manatus | −1.208 | |
Tadarida brasiliensis | 1.146 | |
Neotoma floridana | 0.774 | |
Spilogale putorius | −0.060 | |
Perognathus flavescens | 0.311 | |
Myotis septentrionalis | −0.414 | |
Peromyscus leucopus | −0.480 | |
Southwest | Rattus rattus | −0.712 |
Aplodontia rufa | −0.632 | |
Dipodomys heermanni | −0.403 | |
Microtus californicus | −0.440 | |
Microtus longicaudus | −0.057 | |
Tamias amoenus celeris | −0.212 | |
Dipodomys deserti | −0.872 | |
Sorex vagrans | 0.192 | |
Sylvilagus audubonii | 0.533 | |
Ochotona princeps | 0.677 | |
Neotoma macrotis | −0.386 | |
Peromyscus leucopus | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bingham-Byrne, R.M.; Ozdenerol, E. Multi-Scale Analysis of Lyme Disease Ecology. Rheumato 2024, 4, 88-119. https://doi.org/10.3390/rheumato4020008
Bingham-Byrne RM, Ozdenerol E. Multi-Scale Analysis of Lyme Disease Ecology. Rheumato. 2024; 4(2):88-119. https://doi.org/10.3390/rheumato4020008
Chicago/Turabian StyleBingham-Byrne, Rebecca Michelle, and Esra Ozdenerol. 2024. "Multi-Scale Analysis of Lyme Disease Ecology" Rheumato 4, no. 2: 88-119. https://doi.org/10.3390/rheumato4020008
APA StyleBingham-Byrne, R. M., & Ozdenerol, E. (2024). Multi-Scale Analysis of Lyme Disease Ecology. Rheumato, 4(2), 88-119. https://doi.org/10.3390/rheumato4020008