In the Pursuit of Precision: Novel Target Therapies Revolutionizing SLE Care
Abstract
:1. Introduction
2. SLE Overview: Etiology and Pathogenesis as a Basis for Novel Tailored Therapy
3. Treatment Options for SLE
3.1. B Cell-Directed Therapy for SLE
3.2. Co-Stimulatory Molecules for SLE
3.3. Targeting Intracellular Signaling via JAK Inhibitors in SLE
3.4. Targeting Cytokines and Interferon and Kinoid Vaccines in SLE
3.4.1. IL-2
3.4.2. IL-6
3.4.3. IL-17
3.4.4. IL-12/23 Axis
3.4.5. IL-10
3.4.6. Interferons
3.5. CAR T Cell Therapy in SLE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef] [PubMed]
- Durcan, L.; O’Dwyer, T.; Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019, 393, 2332–2343. [Google Scholar] [CrossRef]
- Kiriakidou, M.; Ching, C.L. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 172, ITC81–ITC96. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.-C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2024, 83, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Lazar, S.; Kahlenberg, J.M. Systemic lupus erythematosus: New diagnostic and therapeutic approaches. Annu. Rev. Med. 2023, 74, 339–352. [Google Scholar] [CrossRef]
- Katarzyna, P.-B.; Wiktor, S.; Ewa, D.; Piotr, L. Current treatment of systemic lupus erythematosus: A clinician’s perspective. Rheumatol. Int. 2023, 43, 1395–1407. [Google Scholar] [CrossRef]
- Wang, D.H.; Wallace, D.J.M. New Insights Into Systemic Lupus Erythematosus Therapies: 2010–2020. JCR J. Clin. Rheumatol. 2022, 28, e217–e221. [Google Scholar] [CrossRef]
- Jordan, N.; Lutalo, P.M.; D’cruz, D.P. Novel therapeutic agents in clinical development for systemic lupus erythematosus. BMC Med. 2013, 11, 120. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update οn the diagnosis and management of systemic lupus erythematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef]
- The Lancet Rheumatology. Embracing holistic management in SLE. Lancet Rheumatol. 2023, 5, e639. [Google Scholar] [CrossRef]
- Parodis, I.; Gomez, A.; Tsoi, A.; Chow, J.W.; Pezzella, D.; Girard, C.; Stamm, T.A.; Boström, C. Systematic literature review informing the EULAR recommendations for the non-pharmacological management of systemic lupus erythematosus and systemic sclerosis. RMD Open 2023, 9, e003297. [Google Scholar] [CrossRef]
- Parodis, I.; Girard-Guyonvarc’h, C.; Arnaud, L.; Distler, O.; Domján, A.; Ende, C.H.M.V.D.; Fligelstone, K.; Kocher, A.; Larosa, M.; Lau, M.; et al. EULAR recommendations for the non-pharmacological management of systemic lupus erythematosus and systemic sclerosis. Ann. Rheum. Dis. 2023, 83, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Dörner, T.; Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 2019, 393, 2344–2358. [Google Scholar] [CrossRef] [PubMed]
- Fanouriakis, A.; Kostopoulou, M.; Alunno, A.; Aringer, M.; Bajema, I.; Boletis, J.N.; Cervera, R.; Doria, A.; Gordon, C.; Govoni, M.; et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 736–745. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Costedoat-Chalumeau, N.; Baumstarck, K.; Loundou, A.; Bouillet, L.; Burtey, S.; Caudwell, V.; Chiche, L.; Couzi, L.; Daniel, L.; et al. Weaning of maintenance immunosuppressive therapy in lupus nephritis (WIN-Lupus): Results of a multicentre randomised controlled trial. Ann. Rheum. Dis. 2022, 81, 1420–1427. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Chiche, L. An era of immunosuppressant withdrawal in systemic lupus erythematosus: Winning through weaning. Lancet Rheumatol. 2024, 6, e133–e134. [Google Scholar] [CrossRef]
- Tsang-A-Sjoe, M.W.P.; Bultink, I.E.M. New developments in systemic lupus erythematosus. Rheumatology 2021, 60, vi21–vi28. [Google Scholar] [CrossRef] [PubMed]
- Durcan, L.; Petri, M. Why targeted therapies are necessary for systemic lupus erythematosus. Lupus 2016, 25, 1070–1079. [Google Scholar] [CrossRef]
- Sánchez, A.R.P.; Voskuyl, A.E.; van Vollenhoven, R.F. Treat-to-target in systemic lupus erythematosus: Advancing towards its implementation. Nat. Rev. Rheumatol. 2022, 18, 146–157. [Google Scholar] [CrossRef]
- Felten, R.; Scherlinger, M.; Mertz, P.; Chasset, F.; Arnaud, L. New biologics and targeted therapies in systemic lupus: From new molecular targets to new indications. A systematic review. Jt. Bone Spine 2023, 90, 105523. [Google Scholar] [CrossRef]
- Thakare, S.B.; So, P.N.; Rodriguez, S.; Hassanein, M.; Lerma, E.; Wiegley, N.; GlomCon Editorial Team. Novel Therapeutics for Management of Lupus Nephritis: What Is Next? Kidney Med. 2023, 5, 100688. [Google Scholar] [CrossRef]
- Jia, X.; Lu, Y.; Zheng, X.; Tang, R.; Chen, W. Targeted therapies for lupus nephritis: Current perspectives and future directions. Chin. Med. J. 2023, 137, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Demkova, K.; Morris, D.L.; Vyse, T.J. Genetics of SLE: Does this explain susceptibility and severity across racial groups? Rheumatology 2023, 62 (Suppl. 1), i15–i21. [Google Scholar] [CrossRef] [PubMed]
- González, L.A.; Toloza, S.M.; McGwin, G., Jr.; Alarcón, G.S. Ethnicity in systemic lupus erythematosus (SLE): Its influence on susceptibility and outcomes. Lupus 2013, 22, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Lanata, C.M.; Paranjpe, I.; Nititham, J.; Taylor, K.E.; Gianfrancesco, M.; Paranjpe, M.; Andrews, S.; Chung, S.A.; Rhead, B.; Barcellos, L.F.; et al. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat. Commun. 2019, 10, 3902, Erratum in Nat. Commun. 2020, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Shumnalieva, R.; Kachakova, D.; Shoumnalieva-Ivanova, V.; Miteva, P.; Kaneva, R.; Monov, S. Whole peripheral blood miR-146a and miR-155 expression levels in Systemic lupus erythematosus patients. Acta Reumatol. Port. 2018, 43, 217–225. [Google Scholar] [PubMed]
- Kamen, D.L. Environmental influences on systemic lupus erythematosus expression. Rheum. Dis. Clin. North Am. 2014, 40, 401–412, vii. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.M.P.; Parks, C.G.; Jacobsen, S.; Costenbader, K.H.; Bernatsky, S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J. Intern. Med. 2022, 291, 755–778. [Google Scholar] [CrossRef] [PubMed]
- Guga, S.; Wang, Y.; Graham, D.C.; Vyse, T.J. A review of genetic risk in systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2023, 19, 1247–1258. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Costenbader, K.H. Environmental exposures and the development of systemic lupus erythematosus. Curr. Opin. Rheumatol. 2016, 28, 497–505. [Google Scholar] [CrossRef]
- Solhjoo, M.; Goyal, A.; Chauhan, K. Drug-Induced Lupus Erythematosus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Long, H.; Yin, H.; Wang, L.; Gershwin, M.E.; Lu, Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J. Autoimmun. 2016, 74, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Hedrich, C.M. Epigenetics in SLE. Curr. Rheumatol. Rep. 2017, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Harley, J.B.; Nath, S.K. Meta-analysis of TNF-alpha promoter -308 A/G polymorphism and SLE susceptibility. Eur. J. Hum. Genet. 2006, 14, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-F.; Feng, X.-L.; Pan, F.-M.; Su, H.; Tao, J.-H.; Ye, D.-Q. Meta-analysis of TNF-alpha promoter—238A/G polymorphism and SLE susceptibility. Autoimmunity 2010, 43, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Ghorbaninezhad, F.; Leone, P.; Alemohammad, H.; Najafzadeh, B.; Nourbakhsh, N.S.; Prete, M.; Malerba, E.; Saeedi, H.; Tabrizi, N.J.; Racanelli, V.; et al. Tumor necrosis factor-α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int. J. Mol. Med. 2022, 49, 43. [Google Scholar] [CrossRef] [PubMed]
- Rönnblom, L.; Leonard, D. Interferon pathway in SLE: One key to unlocking the mystery of the disease. Lupus Sci. Med. 2019, 6, e000270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K. Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Ann. Rheum. Dis. 2023, 82, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Caielli, S.; Wan, Z.; Pascual, V. Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Annu. Rev. Immunol. 2023, 41, 533–560. [Google Scholar] [CrossRef]
- Han, S.; Zhuang, H.; Shumyak, S.; Yang, L.; Reeves, W.H. Mechanisms of autoantibody production in systemic lupus erythematosus. Front. Immunol. 2015, 6, 228. [Google Scholar] [CrossRef]
- Pan, L.; Lu, M.-P.; Wang, J.-H.; Xu, M.; Yang, S.-R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatr. 2020, 16, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Bashal, F. Hematological disorders in patients with systemic lupus erythematosus. Open Rheumatol. J. 2013, 7, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Basta, F.; Fasola, F.; Triantafyllias, K.; Schwarting, A. Systemic Lupus Erythematosus (SLE) Therapy: The Old and the New. Rheumatol. Ther. 2020, 7, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, D.; Cardelli, C.; Elefante, E.; Tani, C.; Mosca, M. Treat-to-Target in Systemic Lupus Erythematosus: Reality or Pipe Dream. J. Clin. Med. 2023, 12, 3348. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Brasil, C.C.; Hanly, J.G.; Urowitz, M.; Clarke, A.E.; Ruiz-Irastorza, G.; Gordon, C.; Ramsey-Goldman, R.; Petri, M.; Ginzler, E.M.; Wallace, D.J.; et al. Flares after hydroxychloroquine reduction or discontinuation: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann. Rheum. Dis. 2022, 81, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, S.K.; Bonfá, E.; Wojdyla, D.; Borba, E.F.; Ramirez, L.A.; Scherbarth, H.R.; Brenol, J.C.T.; Chacón-Diaz, R.; Neira, O.J.; Berbotto, G.A.; et al. Antimalarial treatment may have a time-dependent effect on lupus survival: Data from a multinational Latin American inception cohort. Arthritis Rheum. 2010, 62, 855–862. [Google Scholar] [CrossRef]
- Mathias, L.M.; Stohl, W. Systemic lupus erythematosus (SLE): Emerging therapeutic targets. Expert Opin. Ther. Targets 2020, 24, 1283–1302. [Google Scholar] [CrossRef] [PubMed]
- Navarra, S.V.; Guzmán, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.-M.; Thomas, M.; Kim, H.-Y.; León, M.G.; et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Dörner, T.; Jacobi, A.M.; Lipsky, P.E. B cells in autoimmunity. Arthritis Res. Ther. 2009, 11, 247. [Google Scholar] [CrossRef]
- Negative results for the LUNAR phase III study of rituximab. Nat. Rev. Rheumatol. 2012, 8, 122. [CrossRef]
- Wu, S.; Wang, Y.; Zhang, J.; Han, B.; Wang, B.; Gao, W.; Zhang, N.; Zhang, C.; Yan, F.; Li, Z. Efficacy and safety of rituximab for systemic lupus erythematosus treatment: A meta-analysis. Afr. Health Sci. 2020, 20, 871–884. [Google Scholar] [CrossRef]
- Cobo-Ibáñez, T.; Loza-Santamaría, E.; Pego-Reigosa, J.M.; Marqués, A.O.; Rúa-Figueroa, I.; Fernández-Nebro, A.; Cáliz, R.C.; Longo, F.J.L.; Muñoz-Fernández, S. Efficacy and safety of rituximab in the treatment of non-renal systemic lupus erythematosus: A systematic review. Semin. Arthritis Rheum. 2014, 44, 175–185. [Google Scholar] [CrossRef]
- Weidenbusch, M.; Römmele, C.; Schröttle, A.; Anders, H.-J. Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol. Dial. Transplant. 2013, 28, 106–111. [Google Scholar] [CrossRef]
- Borba, H.H.; Wiens, A.; de Souza, T.T.; Correr, C.J.; Pontarolo, R. Efficacy and safety of biologic therapies for systemic lupus erythematosus treatment: Systematic review and meta-analysis. BioDrugs 2014, 28, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzová, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 3918–3930. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.A.; Wallace, D.J.; Aranow, C.; Fettiplace, J.; Wilson, B.; Mistry, P.; Roth, D.A.; Gordon, D. Long-term safety and efficacy of belimumab in patients with systemic lupus erythematosus: A continuation of a seventy-six-week phase III parent study in the United States. Arthritis Rheumatol. 2018, 70, 868–877. [Google Scholar] [CrossRef]
- Wei, L.-Q.; Liang, Y.-G.; Zhao, Y.; Liang, H.-T.; Qin, D.-C.; She, M.-C. Efficacy and Safety of Belimumab Plus Standard Therapy in Patients With Systemic Lupus Erythematosus: A Meta-analysis. Clin. Ther. 2016, 38, 1134–1140. [Google Scholar] [CrossRef]
- Medscape, Belimumab. Available online: https://reference.medscape.com/drug/benlysta-belimumab-999632 (accessed on 4 March 2024).
- Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 co-stimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef]
- Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995, 270, 985–988. [Google Scholar] [CrossRef]
- Gonzalo, J.A.; Tian, J.; Delaney, T.; Corcoran, J.; Rottman, J.B.; Lora, J.; Al-Garawi, A.; Kroczek, R.; Gutierrez-Ramos, J.C.; Coyle, A.J. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immunol. 2001, 2, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Bazan, F.; Blanchard, D.; Briè, F.; Galizzi, J.P.; van Kooten, C.; Liu, Y.J.; Rousset, F.; Saeland, S. The CD40 antigen and its ligand. Annu. Rev. Immunol. 1994, 12, 881–926. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, M.; Wang, X.; Huang, W.; Schiffer, L.; Grimaldi, C.; Akkerman, A.; Diamond, B.; Madaio, M.P.; Davidson, A. Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J. Immunol. 2004, 173, 3524–3534. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.A.; Bruce, I.N.; Dörner, T.; Leon, M.G.; Leszczyński, P.; Urowitz, M.; Haier, B.; Jimenez, T.; Brittain, C.; Liu, J.; et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 2021, 60, 5397–5407. [Google Scholar] [CrossRef] [PubMed]
- Soybilgic, A. Biologic agents and other emerging therapies for childhood SLE. Pediatr. Ann. 2022, 51, E63–E71. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, M.; Steffgen, J.; Visvanathan, S.; Mohan, C.; Fine, J.S.; Putterman, C. Phoenix from the flames: Rediscovering the role of the CD40-CD40L pathway in systemic lupus erythematosus and lupus nephritis. Autoimmun. Rev. 2020, 19, 102668. [Google Scholar] [CrossRef]
- Marken, J.; Muralidharan, S.; Giltiay, N.V. Correction to: Anti-CD40 antibody KPL-404 inhibits T cell-mediated activation of B cells from healthy donors and autoimmune patients. Arthritis Res. Ther. 2021, 23, 36, Erratum in Arthritis Res. Ther. 2021, 23, 5. https://doi.org/10.1186/s13075-020-02372-z. [Google Scholar] [CrossRef] [PubMed]
- Perper, S.J.; Westmoreland, S.V.; Karman, J.; Twomey, R.; Seagal, J.; Wang, R.; McRae, B.L.; Clarke, S.H. Treatment with a CD40 Antagonist Antibody Reverses Severe Proteinuria and Loss of Saliva Production and Restores Glomerular Morphology in Murine Systemic Lupus Erythematosus. J. Immunol. 2019, 203, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Samant, M.; Ziemniak, J.; Paolini, J.F. First-in-Human Phase 1 Randomized Trial with the Anti-CD40 Monoclonal Antibody KPL-404: Safety, Tolerability, Receptor Occupancy, and Suppression of T-Cell-Dependent Antibody Response. J. Pharmacol. Exp. Ther. 2023, 387, 306–314. [Google Scholar] [CrossRef]
- Doyle, A.M.; Mullen, A.C.; Villarino, A.V.; Hutchins, A.S.; High, F.A.; Lee, H.W.; Thompson, C.B.; Reiner, S.L. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 2001, 194, 893–902. [Google Scholar] [CrossRef]
- Seo, S.K.; Choi, J.H.; Kim, Y.H.; Kang, W.J.; Park, H.Y.; Suh, J.H.; Choi, B.K.; Vinay, D.S.; Kwon, B.S. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat. Med. 2004, 10, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Luo, Y.; O’Shea, J.J.; Nakayamada, S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat. Rev. Rheumatol. 2022, 18, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Nakayamada, S.; Tanaka, Y. Novel JAK inhibitors under investigation for systemic lupus erythematosus: Where are we now? Expert Opin. Investig. Drugs 2023, 32, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023, 83, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Huang, X.; Yang, Y.; Lin, J. Potential Use of Janus Kinase Inhibitors in the Treatment of Systemic Lupus Erythematosus. J. Inflamm. Res. 2023, 16, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, D.; Parodis, I. Janus kinase inhibitors in systemic lupus erythematosus: Implications for tyrosine kinase 2 inhibition. Front. Med. 2023, 10, 1217147. [Google Scholar] [CrossRef] [PubMed]
- Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 2021, 12, 3391. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018, 392, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.F.; Vital, E.M.; Petri, M.; van Vollenhoven, R.; Wallace, D.J.; Mosca, M.; Furie, R.A.; Silk, M.E.; Dickson, C.L.; Meszaros, G.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-I). Lancet 2023, 401, 1001–1010. [Google Scholar] [CrossRef]
- Petri, M.; Bruce, I.N.; Dörner, T.; Tanaka, Y.; Morand, E.F.; Kalunian, K.C.; Cardiel, M.H.; Silk, M.E.; Dickson, C.L.; Meszaros, G.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). Lancet 2023, 401, 1011–1019. [Google Scholar] [CrossRef]
- Morand, E.; Pike, M.; Merrill, J.T.; van Vollenhoven, R.; Werth, V.P.; Hobar, C.; Delev, N.; Shah, V.; Sharkey, B.; Wegman, T.; et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus Erythematosus: A phase II, randomized, double-blind. Placebo-Control Trial Arthritis Rheumatol. 2023, 75, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and cancer risk with Tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Khosrow-Khavar, F.; Kim, S.C.; Lee, H.; Lee, S.B.; Desai, R.J. Tofacitinib and risk of cardiovascular outcomes: Results from the safety of TofAcitinib in routine care patients with rheumatoid arthritis (STAR-RA) study. Ann. Rheum. Dis. 2022, 81, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Molander, V.; Bower, H.; Frisell, T.; Delcoigne, B.; Di Giuseppe, D.; Askling, J. Venous thromboembolism with JAK inhibitors and other immune-modulatory drugs: A Swedish comparative safety study among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 189–197. [Google Scholar] [CrossRef]
- Ma, L.; Peng, L.; Zhao, J.; Bai, W.; Jiang, N.; Zhang, S.; Wu, C.; Wang, L.; Xu, D.; Leng, X.; et al. Efficacy and safety of Janus kinase inhibitors in systemic and cutaneous lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2023, 22, 103440. [Google Scholar] [CrossRef]
- Richter, P.; Cardoneanu, A.; Burlui, A.M.; Macovei, L.A.; Bratoiu, I.; Buliga-Finis, O.N.; Rezus, E. Why Do We Need JAK Inhibitors in Systemic Lupus Erythematosus? Int. J. Mol. Sci. 2022, 23, 11788. [Google Scholar] [CrossRef]
- Dean, G.S.; Tyrrell-Price, J.; Crawley, E.; Isenberg, D.A. Cytokines and systemic lupus erythematosus. Ann. Rheum. Dis. 2000, 59, 243–251. [Google Scholar] [CrossRef]
- Riaz, M.F.; Garg, G.; Umeano, L.; Iftikhar, S.; Alhaddad, S.F.; Paulsingh, C.N.; Hamid, P. Comparison of Low-Dose Interleukin 2 Therapy in Conjunction With Standard Therapy in Patients With Systemic Lupus Erythematosus vs Rheumatoid Arthritis: A Systematic Review. Cureus 2024, 16, e56704. [Google Scholar] [CrossRef] [PubMed]
- von Spee-Mayer, C.; Siegert, E.; Abdirama, D.; Rose, A.; Klaus, A.; Alexander, T.; Enghard, P.; Sawitzki, B.; Hiepe, F.; Radbruch, A.; et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2016, 75, 1407–1415. [Google Scholar] [CrossRef]
- Comte, D.; Karampetsou, M.P.; Tsokos, G.C. T cells as a therapeutic target in SLE. Lupus 2015, 24, 351–363. [Google Scholar] [CrossRef]
- Dai, H.; He, F.; Tsokos, G.C.; Kyttaris, V.C. IL-23 Limits the production of IL-2 and promotes autoimmunity in lupus. J. Immunol. 2017, 199, 903–910. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, X.; Wei, Y.; Sun, X.; Chen, Y.; Deng, J.; Jin, Y.; Gan, Y.; Hu, X.; Jia, R.; et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 2016, 22, 991–993. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, R.; Shao, M.; Zhao, X.; Miao, M.; Chen, J.; Liu, J.; Zhang, X.; Zhang, X.; Jin, Y.; et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: A randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2020, 79, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Humrich, J.Y.; Cacoub, P.; Rosenzwajg, M.; Pitoiset, F.; Pham, H.P.; Guidoux, J.; Leroux, D.; Vazquez, T.; Riemekasten, G.; Smolen, J.S.; et al. Low-dose interleukin-2 therapy in active systemic lupus erythematosus (LUPIL-2): A multicentre, double-blind, randomised and placebo-controlled phase II trial. Ann. Rheum. Dis. 2022, 81, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Humrich, J.Y.; Riemekasten, G. Clinical trials: The rise of IL-2 therapy—A novel biologic treatment for SLE. Nat. Rev. Rheumatol. 2016, 12, 695–696. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. Available online: https://clinicaltrials.gov/search?cond=Lupus%20Erythematosus,%20Systemic&term=IL-2%20&intr=IL2 (accessed on 14 March 2024).
- Gröndal, G.; Gunnarsson, I.; Rönnelid, J.; Rogberg, S.; Klareskog, L.; Lundberg, I. Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin. Exp. Rheumatol. 2000, 18, 565–570. [Google Scholar] [PubMed]
- Ohl, K.; Tenbrock, K. Inflammatory cytokines in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 2011, 432595. [Google Scholar] [CrossRef] [PubMed]
- Ripley, B.J.; Goncalves, B.; Isenberg, D.A.; Latchman, D.S.; Rahman, A. Raised levels of interleukin 6 in systemic lupus erythematosus correlate with anemia. Ann. Rheum. Dis. 2005, 64, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Mehta, H.; Drevets, D.A.; Coggeshall, K.M. IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 2010, 115, 4699–4706. [Google Scholar] [CrossRef]
- Kimura, A.; Kishimoto, T. IL-6: Regulator of Treg/Th17 balance. Eur. J. Immunol. 2010, 40, 1830–1835. [Google Scholar] [CrossRef]
- Wallace, D.J.; Strand, V.; Merrill, J.T.; Popa, S.; Spindler, A.J.; Eimon, A.; Petri, M.; Smolen, J.S.; Wajdula, J.; Christensen, J.; et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: A phase II dose-ranging randomized controlled trial. Ann. Rheum. Dis. 2017, 76, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Miossec, P. Interleukin-17 and lupus: Enough to be a target? For which patients? Lupus 2020, 29, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Szepietowski, J.C.; Nilganuwong, S.; Wozniacka, A.; Kuhn, A.; Nyberg, F.; van Vollenhoven, R.F.; Bengtsson, A.A.; Reich, A.; de Vries, D.E.; van Hartingsveldt, B.; et al. Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum. 2013, 65, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Illei, G.G.; Shirota, Y.; Yarboro, C.H.; Daruwalla, J.; Tackey, E.; Takada, K.; Fleisher, T.; Balow, J.E.; Lipsky, P.E. Tocilizumab in systemic lupus erythematosus: Data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010, 62, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Ichinose, K.; Kawakami, A.; Tsokos, G.C. The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev. Clin. Immunol. 2019, 15, 629–637. [Google Scholar] [CrossRef] [PubMed]
- US National Library of Medicine. Study of Safety, Efficacy and Tolerability of Secukinumab versus Placebo, in Combination with SoC Therapy, in Patients with Active Lupus Nephritis (SELUNE). Available online: https://www.clinicaltrials.gov/ct2/show/NCT04181762 (accessed on 20 June 2024).
- Costa, R.; Antunes, P.; Salvador, P.; Oliveira, P.; Marinho, A. Secukinumab on Refractory Lupus Nephritis. Cureus 2021, 13, e17198. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ribeiro, P.; Lopes, A.R.; Martins-Martinho, J.; Nogueira, E.; Antunes, J.; Romeu, J.C.; Cruz-Machado, A.R.; Vieira-Sousa, E. Secukinumab-induced systemic lupus erythematosus in psoriatic arthritis. ARP Rheumatol. 2023, 2, 265–268. [Google Scholar] [PubMed]
- Koller-Smith, L.; Oakley, S. Secukinumab-induced systemic lupus erythematosus occurring in a patient with ankylosing spondylitis. Rheumatology 2022, 61, e146–e147. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus. Eur. J. Immunol. 2020, 50, 10–16. [Google Scholar] [CrossRef]
- Wong, C.K.; Lit, L.C.W.; Tam, L.S.; Li, E.K.M.; Wong, P.T.Y.; Lam, C.W.K. Hyperproduction of IL- 23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clin. Immunol. 2008, 127, 385–393. [Google Scholar] [CrossRef]
- Zickert, A.; Amoudruz, P.; Sundström, Y.; Rönnelid, J.; Malmström, V.; Gunnarsson, I. IL-17 and IL-23 in lupus nephritis—Association to histopathology and response to treatment. BMC Immunol. 2015, 16, 7. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: Results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018, 392, 1330–1339. [Google Scholar] [CrossRef]
- Facciotti, F.; Larghi, P.; Bosotti, R.; Vasco, C.; Gagliani, N.; Cordiglieri, C.; Mazzara, S.; Ranzani, V.; Rottoli, E.; Curti, S.; et al. Evidence for a pathogenic role of extrafollicular, IL-10-producing CCR6+B helper T cells in systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 2020, 117, 7305–7316. [Google Scholar] [CrossRef]
- Godsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, E.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 34604. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/study/NCT02554019 (accessed on 14 March 2024).
- Hannon, C.W.; McCourt, C.; Lima, H.C.; Chen, S.; Bennett, C. Interventions for cutaneous disease in systemic lupus erythematosus. Cochrane Database Syst. Rev. 2021, 3, CD007478. [Google Scholar] [CrossRef] [PubMed]
- Kirou, K.A.; Lee, C.; George, S.; Louca, K.; Papagiannis, I.G.; Peterson, M.G.E.; Ly, N.; Woodward, R.N.; Fry, K.E.; Lau, A.Y.; et al. Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004, 50, 3958–3967. [Google Scholar] [CrossRef] [PubMed]
- Niewold, T.B.; Hua, J.; Lehman, T.J.A.; Harley, J.B.; Crow, M.K. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007, 8, 492–502. [Google Scholar] [CrossRef]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V.; et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef]
- Zhuang, H.; Szeto, C.; Han, S.; Yang, L.; Reeves, W.H. Animal Models of Interferon Signature Positive Lupus. Front. Immunol. 2015, 6, 291. [Google Scholar] [CrossRef]
- Li, Q.Z.; Zhou, J.; Lian, Y.; Zhang, B.; Branch, V.K.; Carr-Johnson, F.; Karp, D.R.; Mohan, C.; Wakeland, E.K.; Olsen, N.J. Interferon signature gene expression is correlated with autoantibody profiles in patients with incomplete lupus syndromes. Clin. Exp. Immunol. 2010, 159, 281–291. [Google Scholar] [CrossRef]
- Brohawn, P.Z.; Streicher, K.; Higgs, B.W.; Morehouse, C.; Liu, H.; Illei, G.; Ranade, K. Type I interferon gene signature test–low and–high patients with systemic lupus erythematosus have distinct gene expression signatures. Lupus 2019, 28, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Chasset, F.; Mathian, A.; Dorgham, K.; Ribi, C.; Trendelenburg, M.; Huynh-Do, U.; Roux-Lombard, P.; Courvoisier, D.S.; Amoura, Z.; Gorochov, G.; et al. Serum interferon-α levels and IFN type I- stimulated genes score perform equally to assess systemic lupus erythematosus disease activity. Ann. Rheum. Dis. 2022, 81, 901–903. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.M.; Ong, S.J.; Mak, A.; Tay, S.H. Type I Interferons in Systemic Lupus Erythematosus: A Journey from Bench to Bedside. Int. J. Mol. Sci. 2022, 23, 2505. [Google Scholar] [CrossRef] [PubMed]
- Mathian, A.; Mouries-Martin, S.; Dorgham, K.; Devilliers, H.; Yssel, H.; Castillo, L.G.; Cohen-Aubart, F.; Haroche, J.; Hié, M.; de Chambrun, M.P.; et al. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann. Rheum. Dis. 2019, 78, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Khamashta, M.; Merrill, J.T.; Werth, V.P.; Kalunian, K.; Brohawn, P.; Illei, G.G.; Drappa, J.; Wang, L.; Yoo, S.; et al. Anifrolumab, an anti–interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 2017, 69, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; Morand, E.F. Targeting Interferon Signalling in Systemic Lupus Erythematosus: Lessons Learned. Drugs 2024, 84, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Khamashta, M.; Merrill, J.T.; Werth, V.P.; Furie, R.; Kalunian, K.; Illei, G.G.; Drappa, J.; Wang, L.; Greth, W. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: A randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2016, 75, 1909–1916. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Ford, T.L.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Bruce, I.N.; Furie, R.A.; Morand, E.F.; Manzi, S.; Tanaka, Y.; Kalunian, K.C.; Merrill, J.T.; Puzio, P.; Maho, E.; Kleoudis, C.; et al. Concordance and discordance in SLE clinical trial outcome measures: Analysis of three anifrolumab phase 2/3 trials. Ann. Rheum. Dis. 2022, 81, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Phase II randomized trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 2022, 81, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Efficacy of anifrolumab across organ domains in patients with moderate-to-severe systemic lupus erythematosus: A post-hoc analysis of pooled data from the TULIP-1 and TULIP-2 trials. Lancet Rheumatol. 2022, 4, e282–e292. [Google Scholar]
- Kalunian, K.C.; Merrill, J.T.; Maciuca, R.; McBride, J.M.; Townsend, M.J.; Wei, X.; Davis, J.C.; Kennedy, W.P. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 2016, 75, 196–202. [Google Scholar] [CrossRef]
- Zagury, D.; Le Buanec, H.; Mathian, A.; Larcier, P.; Burnett, R.; Amoura, Z.; Emilie, D.; Peltre, G.; Bensussan, A.; Bizzini, B.; et al. IFNalpha kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc. Natl. Acad. Sci. USA 2009, 106, 5294–5299. [Google Scholar] [CrossRef] [PubMed]
- Houssiau, F.A.; Thanou, A.; Mazur, M.; Ramiterre, E.; Mora, D.A.G.; Misterska-Skora, M.; Perich-Campos, R.A.; Smakotina, S.A.; Cruz, S.C.; Louzir, B.; et al. IFN-α kinoid in systemic lupus erythematosus: Results from a phase IIb, randomized, placebo-controlled study. Ann. Rheum. Dis. 2020, 79, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Mackensen, A.; Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 2023, 402, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, S.; Völkl, S.; Reimann, H.; Krönke, G.; Schett, G.; Achenbach, S.; Lutzny-Geier, G.; Müller, F.; Mougiakakos, D.; Dingfelder, J.; et al. Successful Generation of CD19 Chimeric Antigen Receptor T Cells from Patients with Advanced Systemic Lupus Erythematosus. Transpl. Cell Ther. 2023, 29, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Taubmann, J.; Müller, F.; Mutlu, M.Y.; Völkl, S.; Aigner, M.; Bozec, A.; Mackensen, A.; Grieshaber-Bouyer, R.; Schett, G. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2023, 76, 497–504. [Google Scholar] [CrossRef]
- Mougiakakos, D.; Krönke, G.; Völkl, S.; Kretschmann, S.; Aigner, M.; Kharboutli, S.; Böltz, S.; Manger, B.; Mackensen, A.; Schett, G. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. N. Engl. J. Med. 2021, 385, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Mackensen, A.; Müller, F.; Müller, F.; Mougiakakos, D.; Mougiakakos, D.; Böltz, S.; Böltz, S.; Wilhelm, A.; Wilhelm, A.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132, Erratum in Nat. Med. 2023, 29, 2956. https://doi.org/10.1038/s41591-022-02091-9. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Völkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-Cell Therapy in Autoimmune Disease—A Case Series with Follow-up. N. Engl. J. Med. 2024, 390, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. Available online: www.clinicaltrials.gov (accessed on 14 March 2024).
Molecular Pathway and Corresponding Agent Tested in Clinical Trials in SLE | |||
---|---|---|---|
Molecular Target | Therapeutic Agent | Type | Results |
B-cell inhibition | |||
BAFF/APRIL | Belimumab, Benlysta | Fully humanized IgG1 monoclonal antibody | Approved for active, antibody-positive, non-renal SLE |
Tabalumab | Fully human IgG4 monoclonal antibody | Failed to meet its primary endpoints | |
Blisibimod | Fusion protein | Failed to meet its primary endpoints | |
Atacicept | Fully human recombinant fusion protein | APRIL-SLE terminated; ADDRESSII had a better safety profile | |
CD20 | Rituximab | Chimeric monoclonal antibody | LUNAR/EXPLORER-negative; accoring to EULAR it could be used aslast choice for severe refractory lupus |
Ocrelizumab | Fully humanized monoclonal antibody | Trials were terminated because of severe infections | |
Obinutuzumab | Fully humanized monoclonal antibody | Phase III ongoing | |
CD22 | Epratuzumab | Fully humanized monoclonal antibody | Phase III failed |
CD19 | XmAb5871 | Monoclonal antibody | Under investigation |
Proteasome inhibitors | Bortezomib | A modified dipeptidyl boronic acid | Terminated phase II trial because of adverse reactions |
Co-stimulation | |||
CD28/B7 | Abatacept | A fusion protein (CTLA4-Ig) | Ineffective in phase II in nephritis and general SLE |
CD40/CD154 | Dapirolizumab | PEG-conjugated antiCD40L Fab fragment | Ongoing |
Intracellular signaling | |||
Bruton’s tyrosine kinase | Fenebrutinib | Small molecule, tyrosine kinase | Good safety profile, failed to meet its primary endpoint |
Calcineurin inhibitor | Voclosporin | Calcineurin inhibitor | Approved by FDA for lupus nephritis |
JAK1 | Upadacitinib | Small molecule | Phase III trial in SLE |
JAK1/2 | Baricitinib | Small molecule | Phase III discontinued |
JAK1/3 | Tofacitinib | Small molecule | Under investigation |
Tyk2 (JAK4) | Deucravacitinib | Small molecule | Under investigation |
Cytokines | |||
Interferon-α | Sifalimumab | Fully human monoclonal antibody | No effect; discontinued |
Rontalizumab | Humanized monoclonal antibody | Well tolerated, but no additional trials planned | |
Anifrolumab | Fully human monoclonal antibody | Approved for moderate and severe SLE and SLE nephritis | |
IFN-K | Inactivated IFN-α coupled with protein | Failed to meet its primary endpoint | |
IL-2 | Aldesleukin; AMG592 | Cytokine | Under investigation |
IL-12/23 | Ustekinumab | Fully human monoclonal antibody | Suspended phase III over efficacy data |
IL-6 | Sirukumab | Fully human monoclonal antibody | Failed |
IL-17 | Secukinumab | Fully human monoclonal antibody | Phase III clinical trial |
IL-10 | Anti-IL-10 antibody | Fully human monoclonal antibody | Has completed a phase II trial (NCT02554019) |
CAR T cell therapy | Chimeric–antigen receptors are recombinant receptors that are coupled to autologous T cells to target a specific antigen | - | In clinical trials for autoimmune diseases, incl. SLE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velikova, T.; Miteva, D.; Kokudeva, M.; Vasilev, G.H.; Monov, S.; Shumnalieva, R. In the Pursuit of Precision: Novel Target Therapies Revolutionizing SLE Care. Rheumato 2024, 4, 120-136. https://doi.org/10.3390/rheumato4030009
Velikova T, Miteva D, Kokudeva M, Vasilev GH, Monov S, Shumnalieva R. In the Pursuit of Precision: Novel Target Therapies Revolutionizing SLE Care. Rheumato. 2024; 4(3):120-136. https://doi.org/10.3390/rheumato4030009
Chicago/Turabian StyleVelikova, Tsvetelina, Dimitrina Miteva, Maria Kokudeva, Georgi H. Vasilev, Simeon Monov, and Russka Shumnalieva. 2024. "In the Pursuit of Precision: Novel Target Therapies Revolutionizing SLE Care" Rheumato 4, no. 3: 120-136. https://doi.org/10.3390/rheumato4030009
APA StyleVelikova, T., Miteva, D., Kokudeva, M., Vasilev, G. H., Monov, S., & Shumnalieva, R. (2024). In the Pursuit of Precision: Novel Target Therapies Revolutionizing SLE Care. Rheumato, 4(3), 120-136. https://doi.org/10.3390/rheumato4030009