Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Laser Powder Bed Fusion
2.2. Heat Treatment
2.3. Metallographic Sample Preparation
2.4. Characterization Techniques
3. Results
3.1. General Microstructure
3.2. Formation of γ″ Precipitate
3.3. Formation of δ Precipitate
3.4. Formation of Carbides
3.5. Formation of Al2O3 Particles
3.6. Microhardness
4. Discussion
5. Conclusions
- Melt pool boundaries along with dendritic microstructure growing in different directions were observed on the plane normal to sweep direction in as-printed L-PBF IN625. The microstructure stayed fairly similar at 700 °C. Partial recrystallization took place at 900 °C with disappearing melt pool boundaries. The microstructure was almost fully recrystallized with a dissolved dendritic structure and precipitates at 1050 °C.
- Large, elongated grains growing along the build direction were observed in the as-printed, 700 °C, and 900 °C states of L-PBF IN625. The texture became stronger along the (100) plane with increasing heat treatment temperature until it became random and weak at 1050 °C. The microstructure of L-PBF IN625 at 1050 °C is similar to wrought IN625; however, the grain size is still fairly large compared to that in the wrought condition.
- Metastable γ″ precipitates form during the manufacturing stage, causing higher hardness in as-printed L-PBF IN625. Two out of three variants of the precipitate were detected in the TEM SAED pattern. The third variant appeared at 700 °C, which was caused by direct aging of AP IN625 that contained residual stress.
- Stable δ phase formed at 700 °C upon the dissolution of some γ″ precipitates, causing lower hardness compared with AP. Two variants of δ precipitate were observed at 700 °C, which grew upon heat treatment at 900 °C. The formation and growth of δ precipitate caused a stacking fault in the primary γ matrix. The hardness kept decreasing at 900 °C as well due to the recrystallization and dissolution of the γ″ phase.
- Carbides were found for all conditions of L-PBF IN625. Considering the EDS patterns and morphology of the particles, they appear to be MC carbides rich in Nb and Mo.
- Metallic oxides rich in Al were also found in all L-PBF samples. The presence of oxygen in feedstock powder and build chamber may cause these oxide inclusions. However, some of the Al2O3 particles surrounding δ precipitates may be caused by the dissolution of Al-containing γ″ precipitates.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoemaker, L.E. Alloys 625 and 725: Trends in Properties and Applications. In Proceedings of the Superalloys 718, 625, 706 and Various Derivatives (2005); TMS: Pittsburg, PA, USA, 2005; pp. 409–418. [Google Scholar]
- Donachie, M.J.; Donachie, S.J. Superalloys: A Technical Guide, 2nd ed.; ASM International: Detroit, MI, USA, 2002; ISBN 978-1-62708-267-9. [Google Scholar]
- Liu, X.; Fan, J.; Zhang, P.; Cao, K.; Wang, Z.; Chen, F.; Liu, D.; Tang, B.; Kou, H.; Li, J. Influence of Heat Treatment on Inconel 625 Superalloy Sheet: Carbides, γ’’, δ Phase Precipitation and Tensile Deformation Behavior. J. Alloys Compd. 2023, 930, 167522. [Google Scholar] [CrossRef]
- Gola, K.; Dubiel, B.; Kalemba-Rec, I. Microstructural Changes in Inconel 625 Alloy Fabricated by Laser-Based Powder Bed Fusion Process and Subjected to High-Temperature Annealing. J. Mater. Eng. Perform. 2020, 29, 1528–1534. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Mireles, J.; Stafford, S.W.; Perez, M.A.; Terrazas, C.A.; Wicker, R.B. Characterization of Inconel 625 Fabricated Using Powder-Bed-Based Additive Manufacturing Technologies. J. Mater. Process. Technol. 2019, 264, 200–210. [Google Scholar] [CrossRef]
- Amato, K. Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting. J. Mater. Sci. Res. 2012, 1, 3. [Google Scholar] [CrossRef]
- Keya, T.; O’Donnell, V.; Lieben, J.; Romans, A.; Harvill, G.; Andurkar, M.; Gahl, J.; Thompson, S.M.; Prorok, B.C. Effects of Heat Treatment and Fast Neutron Irradiation on the Microstructure and Microhardness of Inconel 625 Fabricated via Laser-Powder Bed Fusion. In Proceedings of the 2021 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 2–4 August 2021. [Google Scholar]
- Keya, T.; Bikmukhametov, I.; Shmatok, A.; Harvill, G.; Brewer, L.N.; Thompson, G.B.; Andurkar, M.; Thompson, S.M.; O’Donnell, V.; Prorok, B.C. Evolution of Microstructure and Its Influence on the Mechanical Behavior of LPBF Inconel 625 upon Direct Aging. Manuf. Lett. 2023, 35, 732–742. [Google Scholar] [CrossRef]
- Lass, E.A.; Stoudt, M.R.; Williams, M.E.; Katz, M.B.; Levine, L.E.; Phan, T.Q.; Gnaeupel-Herold, T.H.; Ng, D.S. Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing. Metall. Mater. Trans. A 2017, 48, 5547–5558. [Google Scholar] [CrossRef]
- Li, C.; White, R.; Fang, X.Y.; Weaver, M.; Guo, Y.B. Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment. Mater. Sci. Eng. A 2017, 705, 20–31. [Google Scholar] [CrossRef]
- Zhang, F.; Levine, L.E.; Allen, A.J.; Stoudt, M.R.; Lindwall, G.; Lass, E.A.; Williams, M.E.; Idell, Y.; Campbell, C.E. Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion. Acta Mater. 2018, 152, 200–214. [Google Scholar] [CrossRef]
- Stoudt, M.R.; Lass, E.A.; Ng, D.S.; Williams, M.E.; Zhang, F.; Campbell, C.E.; Lindwall, G.; Levine, L.E. The Influence of Annealing Temperature and Time on the Formation of δ-Phase in Additively-Manufactured Inconel 625. Metall. Mater. Trans. A 2018, 49, 3028–3037. [Google Scholar] [CrossRef]
- Keller, T.; Lindwall, G.; Ghosh, S.; Ma, L.; Lane, B.M.; Zhang, F.; Kattner, U.R.; Lass, E.A.; Heigel, J.C.; Idell, Y.; et al. Application of Finite Element, Phase-Field, and CALPHAD-Based Methods to Additive Manufacturing of Ni-Based Superalloys. Acta Mater. 2017, 139, 244–253. [Google Scholar] [CrossRef]
- Staroń, S.; Dubiel, B.; Gola, K.; Kalemba-Rec, I.; Gajewska, M.; Pasiowiec, H.; Wróbel, R.; Leinenbach, C. Quantitative Microstructural Characterization of Precipitates and Oxide Inclusions in Inconel 625 Superalloy Additively Manufactured by L-PBF Method. Metall. Mater. Trans. A 2022, 53, 2459–2479. [Google Scholar] [CrossRef]
- Son, K.; Kassner, M.E.; Lee, K.A. The Creep Behavior of Additively Manufactured Inconel 625. Adv. Eng. Mater. 2020, 22, 1900543. [Google Scholar] [CrossRef]
- Oblak, J.M.; Paulonis, D.F.; Duvall, D.S. Coherency Strengthening in Ni Base Alloys Hardened by D22 γ′ Precipitates. Metall. Trans. 1974, 5, 143–153. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Precipitation of the δ-Ni3Nb Phase in Two Nickel Base Superalloys. Metall. Trans. A 1988, 19, 453–465. [Google Scholar] [CrossRef]
- Yu, L.-J.; Marquis, E.A. Precipitation Behavior of Alloy 625 and Alloy 625 Plus. J. Alloys Compd. 2019, 811, 151916. [Google Scholar] [CrossRef]
- Floreen, S.; Fuchs, G.E.; Yang, W.J. The Metallurgy of Alloy 625. Superalloys 1994, 718, 13–37. [Google Scholar]
- Suave, L.M.; Cormier, J.; Villechaise, P.; Soula, A.; Hervier, Z.; Bertheau, D.; Laigo, J. Microstructural Evolutions during Thermal Aging of Alloy 625: Impact of Temperature and Forming Process. Metall. Mater. Trans. A 2014, 45, 2963–2982. [Google Scholar] [CrossRef]
- Kirman, I.; Warrington, D.H. The Precipitation of NisNb Phases in a Ni-Fe-Cr-Nb Alloy. Metall. Trans. 1970, 1, 2667–2675. [Google Scholar] [CrossRef]
- Rai, S.K.; Kumar, A.; Shankar, V.; Jayakumar, T.; Rao, K.B.S.; Raj, B. Characterization of Microstructures in Inconel 625 Using X-Ray Diffraction Peak Broadening and Lattice Parameter Measurements. Scr. Mater. 2004, 51, 59–63. [Google Scholar] [CrossRef]
- Sarkar, A.; Mukherjee, P.; Barat, P.; Jayakumar, T.; Mahadevan, S.; Rai, S.K. Lattice Misfit Measurement in Inconel 625 by X-Ray Diffraction Technique. Int. J. Mod. Phys. B 2008, 22, 3977–3985. [Google Scholar] [CrossRef]
- Li, S.; Wei, Q.; Shi, Y.; Zhu, Z.; Zhang, D. Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting. J. Mater. Sci. Technol. 2015, 31, 946–952. [Google Scholar] [CrossRef]
- Dinda, G.P.; Dasgupta, A.K.; Mazumder, J. Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability. Mater. Sci. Eng. A 2009, 509, 98–104. [Google Scholar] [CrossRef]
- Shankar, V.; Rao, K.B.S.; Mannan, S.L. Microstructure and Mechanical Properties of Inconel 625 Superalloy. J. Nucl. Mater. 2001, 288, 222–232. [Google Scholar] [CrossRef]
- Baldan, R.; Silva, A.A.A.P.d.; Tanno, T.M.; da Costa, E.T.; Brentegani, J.V.N.; Couto, A.A. Experimental Investigation of Delta Phase Precipitation in Inconel 625 Superalloy Aged at 550, 625 and 725 °C. Mater. Res. 2020, 23, e20190546. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Zhang, C.; Huang, Z.; Jia, M.; Shen, Q. Microstructures and Mechanical Behaviors of Additive Manufactured Inconel 625 Alloys via Selective Laser Melting and Laser Engineered Net Shaping. J. Alloys Compd. 2022, 917, 165572. [Google Scholar] [CrossRef]
- Marchese, G.; Lorusso, M.; Parizia, S.; Bassini, E.; Lee, J.-W.; Calignano, F.; Manfredi, D.; Terner, M.; Hong, H.-U.; Ugues, D. Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2018, 729, 64–75. [Google Scholar] [CrossRef]
- Deng, P.; Song, M.; Yang, J.; Pan, Q.; McAllister, S.; Li, L.; Prorok, B.C.; Lou, X. On the Thermal Coarsening and Transformation of Nanoscale Oxide Inclusions in 316L Stainless Steel Manufactured by Laser Powder Bed Fusion and Its Influence on Impact Toughness. Mater. Sci. Eng. A 2022, 835, 142690. [Google Scholar] [CrossRef]
- Deng, P.; Karadge, M.; Rebak, R.B.; Gupta, V.K.; Prorok, B.C.; Lou, X. The Origin and Formation of Oxygen Inclusions in Austenitic Stainless Steels Manufactured by Laser Powder Bed Fusion. Addit. Manuf. 2020, 35, 101334. [Google Scholar] [CrossRef]
- Lou, X.; Andresen, P.L.; Rebak, R.B. Oxide Inclusions in Laser Additive Manufactured Stainless Steel and Their Effects on Impact Toughness and Stress Corrosion Cracking Behavior. J. Nucl. Mater. 2018, 499, 182–190. [Google Scholar] [CrossRef]
- Nguejio, J.; Szmytka, F.; Hallais, S.; Tanguy, A.; Nardone, S.; Martinez, M.G. Comparison of Microstructure Features and Mechanical Properties for Additive Manufactured and Wrought Nickel Alloys 625. Mater. Sci. Eng. A 2019, 764, 138214. [Google Scholar] [CrossRef]
- Marchese, G.; Bassini, E.; Parizia, S.; Manfredi, D.; Ugues, D.; Lombardi, M.; Fino, P.; Biamino, S. Role of the Chemical Homogenization on the Microstructural and Mechanical Evolution of Prolonged Heat-Treated Laser Powder Bed Fused Inconel 625. Mater. Sci. Eng. A 2020, 796, 140007. [Google Scholar] [CrossRef]
- Qin, H.; Bi, Z.; Yu, H.; Feng, G.; Zhang, R.; Guo, X.; Chi, H.; Du, J.; Zhang, J. Assessment of the Stress-Oriented Precipitation Hardening Designed by Interior Residual Stress during Ageing in IN718 Superalloy. Mater. Sci. Eng. A 2018, 728, 183–195. [Google Scholar] [CrossRef]
- Rong, Y.; Chen, S.; Hu, G.; Gao, M.; Wei, R.P. Prediction and Characterization of Variant Electron Diffraction Patterns for γ″ and δ Precipitates in an Inconel 718 Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 2297–2303. [Google Scholar] [CrossRef]
- Dehmas, M.; Lacaze, J.; Niang, A.; Viguier, B. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy. Adv. Mater. Sci. Eng. 2011, 2011, 940634. [Google Scholar] [CrossRef]
- Zhang, J.P.; Ye, H.Q.; Kuo, K.H.; Amelinckx, S. A High-Resolution Electron Microscopy Study of the Domain Structure in Ni3Nb. II. Orientation and General Domains. Phys. Status Solidi (a) 1986, 93, 457–462. [Google Scholar] [CrossRef]
- SAE MOBILUS. Available online: https://saemobilus.sae.org/content/ams5599 (accessed on 4 September 2023).
- Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting. J. Alloys Compd. 2012, 513, 518–523. [Google Scholar] [CrossRef]
- Calandri, M.; Yin, S.; Aldwell, B.; Calignano, F.; Lupoi, R.; Ugues, D. Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting. Materials 2019, 12, 1293. [Google Scholar] [CrossRef]
- Kulawik, K.; Buffat, P.A.; Kruk, A.; Wusatowska-Sarnek, A.M.; Czyrska-Filemonowicz, A. Imaging and Characterization of γ′ and γ″ Nanoparticles in Inconel 718 by EDX Elemental Mapping and FIB–SEM Tomography. Mater. Charact. 2015, 100, 74–80. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Qin, H.L.; Bi, Z.N.; Tang, Y.T.; Araújo de Oliveira, J.; Lee, T.L.; Panwisawas, C.; Zhang, S.Y.; Zhang, J.; Li, J.; et al. γ″ Variant-Sensitive Deformation Behaviour of Inconel 718 Superalloy. J. Mater. Sci. Technol. 2022, 126, 169–181. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Guo, Q.; Ma, Z.; Li, H.; Liu, Y. Improving Creep Resistance of Nickel-Based Superalloy Inconel 718 by Tailoring Gamma Double Prime Variants. Scr. Mater. 2019, 164, 66–70. [Google Scholar] [CrossRef]
- Cao, G.H.; Sun, T.Y.; Wang, C.H.; Li, X.; Liu, M.; Zhang, Z.X.; Hu, P.F.; Russell, A.M.; Schneider, R.; Gerthsen, D.; et al. Investigations of γ′, γ″ and δ Precipitates in Heat-Treated Inconel 718 Alloy Fabricated by Selective Laser Melting. Mater. Charact. 2018, 136, 398–406. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Qin, H.L.; Bi, Z.N.; Li, J.; Paul, S.; Lee, T.L.; Zhang, S.Y.; Zhang, J.; Dong, H.B. Evolution of Lattice Spacing of Gamma Double Prime Precipitates During Aging of Polycrystalline Ni-Base Superalloys: An In Situ Investigation. Metall. Mater. Trans. A 2020, 51, 574–585. [Google Scholar] [CrossRef]
- Andurkar, M.; Suzuki, T.; Omori, M.; Prorok, B.; Gahl, J. Residual Stress Measurements via X-Ray Diffraction Cos α Method on Various Heat-Treated Inconel 625 Specimens Fabricated via Laser-Powder Bed Fusion. In Proceedings of the 2021 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 2–4 August 2021. [Google Scholar]
- Zhang, R.; Qin, H.; Bi, Z.; Li, J.; Paul, S.; Lee, T.; Nenchev, B.; Zhang, J.; Kabra, S.; Kelleher, J.; et al. Using Variant Selection to Facilitate Accurate Fitting of γ″ Peaks in Neutron Diffraction. Metall. Mater. Trans. A 2019, 50, 5421–5432. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, C.; Wang, D.; Liu, W.; Fang, X.; Wellmann, D.; Zhao, Y.; Tian, Y. A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy. Appl. Sci. 2020, 10, 81. [Google Scholar] [CrossRef]
- Andurkar, M.; O’Donnell, V.; Keya, T.; Prorok, B.C.; Gahl, J.; Thompson, S.M. Fast Neutron Irradiation-Induced Hardening in Inconel 625 and Inconel 718 Fabricated via Laser Powder Bed Fusion. Prog. Addit. Manuf. 2024. [Google Scholar] [CrossRef]
% wt. | Ni | Cr | Mo | Fe | Nb + Ta | Co | C | P | S | Al | Ti | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-PBF | Bal | 21 | 9 | <5.0 | 3.5 | <1.0 | <0.1 | <0.015 | <0.015 | <0.4 | <0.4 | <0.5 |
Wrought | Bal | 22.36 | 9.0 | 4.72 | 3.32 | 0.8 | 0.035 | 0.009 | 0.005 | 0.08 | 0.3 | 0.18 |
Sample | Heat Treatment Temperature (°C) | Time (Hours) | Cooling Method |
---|---|---|---|
AP | As-printed (No HT) | N/A | N/A |
700_2h | 700 | 2 | Air Cooled |
900_2h | 900 | 2 | Air Cooled |
1050_2h | 1050 | 2 | Air Cooled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keya, T.; Fischer, R.D.; Andurkar, M.; Thompson, S.M.; O’Donnell, V.; Gahl, J.; Prorok, B.C. Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment. Alloys 2024, 3, 295-312. https://doi.org/10.3390/alloys3040018
Keya T, Fischer RD, Andurkar M, Thompson SM, O’Donnell V, Gahl J, Prorok BC. Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment. Alloys. 2024; 3(4):295-312. https://doi.org/10.3390/alloys3040018
Chicago/Turabian StyleKeya, Tahmina, Ralf D. Fischer, Mohanish Andurkar, Scott M. Thompson, Valentina O’Donnell, John Gahl, and Barton C. Prorok. 2024. "Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment" Alloys 3, no. 4: 295-312. https://doi.org/10.3390/alloys3040018
APA StyleKeya, T., Fischer, R. D., Andurkar, M., Thompson, S. M., O’Donnell, V., Gahl, J., & Prorok, B. C. (2024). Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment. Alloys, 3(4), 295-312. https://doi.org/10.3390/alloys3040018