Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Alloys, Volume 3, Issue 4 (December 2024) – 4 articles

Cover Story (view full-size image): The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in dependence on shear-cutting parameters and a subsequent heat treatment at 700 °C. This improves the fatigue strength by reducing tensile residual stresses and a large part of the strain hardening region. However, the intensity of this improvement depends on the shear-cutting parameters. This is related to the corresponding edge surfaces characteristically being formed during shear cutting. Specimens cut with a worn cutting tool show a more pronounced increase in fatigue life. In contrast, specimens produced with a sharp-edged cutting tool and high cutting clearance barely benefit from the heat treatment. This appears to be caused by differences in surface topography, in particular coarse topographical damage in the form of grain breakouts. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 11699 KiB  
Article
Evolution of Precipitates and Microhardness of L-PBF Inconel 625 Through Relevant Thermal Treatment
by Tahmina Keya, Ralf D. Fischer, Mohanish Andurkar, Scott M. Thompson, Valentina O’Donnell, John Gahl and Barton C. Prorok
Alloys 2024, 3(4), 295-312; https://doi.org/10.3390/alloys3040018 - 17 Dec 2024
Viewed by 515
Abstract
Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) technique that produces a unique microstructure significantly different from wrought microstructure. Inconel 625 (IN625) is an alloy widely used to manufacture complex parts, but it comes with its own unique challenges. The [...] Read more.
Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) technique that produces a unique microstructure significantly different from wrought microstructure. Inconel 625 (IN625) is an alloy widely used to manufacture complex parts, but it comes with its own unique challenges. The alloy is prone to precipitation under elevated temperatures, which makes designing suitable heat treatment to tailor the desired microstructure and mechanical properties critical. Traditional heat treatment for wrought IN625 cannot be applied to L-PBF IN625; therefore, it is vital to understand the evolution of precipitates on the way to complete recrystallization. This study focuses on these precipitates in IN625 produced by the L-PBF technique. Heat treatments at 700 °C, 900 °C, and 1050 °C were performed separately to encourage the precipitation of strengthening γ″, the detrimental δ phase, and the dissolution of precipitates, respectively. γ″ precipitates were found in the as-printed condition and at 700 °C. δ precipitates were detected at 700 and 900 °C. Carbides and Al-rich oxides were observed in all conditions of L-PBF IN625. Texture analysis showed grain growth along the build direction with strong (100) texture at temperatures up to 900 °C. Weak and random texture with equiaxed grains was observed at 1050 °C, which is similar to wrought IN625. Full article
Show Figures

Figure 1

14 pages, 15922 KiB  
Article
Influence of Subsequent Heat Treatment on Fatigue Behavior of Shear-Cut Electrical Steel Sheets
by Albin Gottwalt-Baruth, Paul Kubaschinski, Manuela Waltz and Ulrich Tetzlaff
Alloys 2024, 3(4), 281-294; https://doi.org/10.3390/alloys3040017 - 25 Nov 2024
Viewed by 666
Abstract
The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in dependence on shear-cutting parameters and a subsequent heat treatment. For this, stress-controlled fatigue tests are performed before and after annealing at 700 °C for a total of six different [...] Read more.
The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in dependence on shear-cutting parameters and a subsequent heat treatment. For this, stress-controlled fatigue tests are performed before and after annealing at 700 °C for a total of six different shear-cutting settings. For all parameters, the fatigue strength of shear-cut sheets is improved by the heat treatment. This is due to reduction in a large part of the strain hardening region as well as the reduction in tensile residual stresses. Both were introduced during shear cutting and act detrimental to the fatigue strength. However, the intensity of this improvement depends on the shear-cutting parameters. This is related to the corresponding edge surfaces characteristically being formed during shear cutting. Specimens cut with a worn cutting tool show a more pronounced increase in fatigue life. In contrast, specimens produced with a sharp-edged cutting tool and high cutting clearance hardly benefit from the heat treatment. This appears to be caused by differences in surface topography, in particular coarse topographical damage in the form of grain breakouts. If these occur during shear cutting, the crack formation is not significantly delayed by additional annealing. Full article
Show Figures

Figure 1

12 pages, 3083 KiB  
Article
Research on the Corrosion Resistance and Cytotoxicity of Medical Forged Co-28Cr-6Mo Alloy
by Bo Xu, Yangtao Xu and Jianglong Wei
Alloys 2024, 3(4), 269-280; https://doi.org/10.3390/alloys3040016 - 18 Oct 2024
Viewed by 844
Abstract
Co-Cr-Mo alloy as a human body implant material has a long history, because of its excellent corrosion resistance and biocompatibility, and is widely used in human hip joint materials. Co-Cr-Mo alloy in the human body is often in a passivation state; the formation [...] Read more.
Co-Cr-Mo alloy as a human body implant material has a long history, because of its excellent corrosion resistance and biocompatibility, and is widely used in human hip joint materials. Co-Cr-Mo alloy in the human body is often in a passivation state; the formation of dense oxide film on the alloy surface prevents further corrosion of the alloy. The main component of the passivation film is the oxide of Cr, so a layer of oxide film formed by Cr on the surface of Co-Cr-Mo alloy is the reason for its good corrosion resistance. In biocompatibility, cytotoxicity is the first choice and necessary option for biological evaluation, and cytotoxicity can quickly detect the effect of materials on cells in a relatively short time. Therefore, this research conducted a comparative evaluation on the corrosion resistance and biocompatibility of forged Co-Cr-Mo alloys produced in domestic and foreign alloys in line with medical standards. Three simulated human body fluids and Princeton electrochemical station were selected for corrosion resistance experiments, and it was found that the corrosion resistance of four alloys in sodium citrate solution inside and outside China would be reduced. All the alloys exhibit secondary passivation behavior in Hanks solution, which improves the corrosion resistance of the alloys. According to the self-corrosion potential Ecorr analysis, the corrosion resistance of domestic B alloy is the best, while that of foreign R31537 alloy is poor. In the biocompatibility experiment, the biocompatibility of Co-Cr-Mo alloy was evaluated through the measurement of contact Angle and cytotoxicity reaction. The experimental results show that Co-Cr-Mo alloy is a hydrophilic material, and the contact Angle of foreign R31537 alloy is smaller, indicating that the surface of R31537 alloy is more suitable for cell adhesion and spreading. According to the qualitative and quantitative analysis of the cytotoxicity experiment, the toxic reaction grade of domestic A, B and R31537 alloy is grade 1, the toxic reaction grade of C alloy is grade 2, and C alloy has a slight toxic reaction. Full article
Show Figures

Figure 1

12 pages, 4591 KiB  
Article
Assessing the Corrosive Effects of Unmelted Particles in Additively Manufactured Ti6Al4V: A Study in Simulated Body Fluid
by Surinder Pal, Xavier Velay and Waqas Saleem
Alloys 2024, 3(4), 257-268; https://doi.org/10.3390/alloys3040015 - 9 Oct 2024
Viewed by 1056
Abstract
This study investigates the corrosion behavior of Grade 23 Ti6Al4V alloys produced through laser powder bed fusion (L-PBF) when exposed to simulated body fluid at room temperature, focusing on the role of unmelted particles. This research aims to understand how these microstructural features, [...] Read more.
This study investigates the corrosion behavior of Grade 23 Ti6Al4V alloys produced through laser powder bed fusion (L-PBF) when exposed to simulated body fluid at room temperature, focusing on the role of unmelted particles. This research aims to understand how these microstructural features, resulting from the additive manufacturing process, influence the corrosion resistance of the alloys. It was observed that unmelted particles serve as critical sites for initiating localized corrosion, including pitting, which significantly compromises the material’s overall durability. Electrochemical testing and detailed surface analysis revealed that these particles, alongside other defects such as voids, exacerbate the susceptibility to corrosion in biomedical environments where high material reliability is paramount. Weight loss measurements conducted over exposure periods of 48 h, 96 h, and 144 h demonstrated a progressive increase in corrosion, correlating with the presence of unmelted particles. These findings underscore the importance of optimizing L-PBF processing parameters to minimize the formation of unmelted particles, thereby enhancing corrosion resistance and extending the operational lifespan of Ti6Al4V implants in biomedical applications. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop