Precision Medicine for Gastric Cancer: Current State of Organoid Drug Testing
Abstract
:1. Introduction
2. Gastric Cancer-Derived Organoid Establishment
3. Gastric Cancer Organoid Drug Testing: Summary of Current Methodologies
3.1. Patient Recruitment and Organoid Selection for Drug Assays
Year | Author | Tissue Acquisition | Tumour Site | Histology (Lauren Classification) | Total GC Organoids Established | Efficiency of GC Organoid Establishment | Total GC Organoids Drug Tested |
---|---|---|---|---|---|---|---|
2018 | Gao M et al. [58] | Endoscope/Surgery | Stomach/MS | N. R | 15 | N. R | N. R |
2018 | Vlachogiannis G et al. [39] | Endoscope | GOJ/MS (liver/peritoneum) | Intestinal/Diffuse | 5 | N. R | 5 |
2018 | Yan H et al. [53] | Surgery | Stomach | Intestinal/Diffuse | 34 | 50% | 9 from 7 patients |
2019 | Seidlitz T et al. [51] | Surgery | Stomach/GOJ/MS (lung) | Intestinal/Diffuse/Mixed | 20 | N. R | 4 |
2019 | Steele NG et al. [29] | Surgery | Stomach | Intestinal/Diffuse/Mixed | 7 | N. R | 6 |
2019 | Li J et al. [52] | Ascites puncture | MA | N. R | 11 | 92% # | 7 |
2022 | Miao X et al. [56] | Surgery | Stomach | N. R | 3 | N. R | N. R |
2022 | Li G et al. [59] | Surgery | Stomach | N. R | 12 | 46% | 4 |
2023 | Yoon C et al. [57] | Endoscope | GOJ/stomach | N. R | 13 | 54% | 13 |
2023 | Zhang H et al. [60] | Surgery | Stomach | N. R | 30 | 80% | ~5 |
2023 | Zu M et al. [55] | Surgery | Stomach | Intestinal/Diffuse/Mixed | 12 | 92% # | 12 |
2023 | McDonald H et al. [61] | Endoscope | Stomach | Intestinal/Diffuse/Mixed | 8 | 53% | 2 |
2024 | Xu J et al. [62] | Surgery | Stomach | Intestinal/Diffuse/Mixed | 21 | 60% (both GC and normal) | 5 |
2024 | Schmäche T et al. [49] | Endoscope | Stomach/GOJ | Intestinal/Diffuse/Mixed | 64 | 61% (both GC and normal) | 26 |
2024 | Zhao Y et al. [50] | Surgery | Stomach | Intestinal/Diffuse/Mixed | 57 | 78% | 41 |
2024 | Chen G et al. [63] | Surgery | Stomach | Intestinal/Diffuse | 28 | 56% | N. R |
3.2. Duration of Drug Treatment
3.3. Measurement and Analysis of Drug Sensitivity in Organoids
3.4. Composition of Chemotherapeutic Drugs Being Tested
3.5. Testing Molecularly Targeted Therapies
4. Methods of Comparing Organoid Drug Response to Patient Response in the Clinic
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- De, B.; Rhome, R.; Jairam, V.; Özbek, U.; Holcombe, R.F.; Buckstein, M.; Ang, C. Gastric adenocarcinoma in young adult patients: Patterns of care and survival in the United States. Gastric Cancer 2018, 21, 889–899. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Merchant, S.J.; Kim, J.; Choi, A.H.; Sun, V.; Chao, J.; Nelson, R. A rising trend in the incidence of advanced gastric cancer in young Hispanic men. Gastric Cancer 2017, 20, 226–234. [Google Scholar] [CrossRef]
- Laurén, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef]
- Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef]
- Bonelli, P.; Borrelli, A.; Tuccillo, F.M.; Silvestro, L.; Palaia, R.; Buonaguro, F.M. Precision medicine in gastric cancer. World J. Gastrointest. Oncol. 2019, 11, 804–829. [Google Scholar] [CrossRef]
- Guan, W.-L.; He, Y.; Xu, R.-H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef]
- Girshally, R.; Demtröder, C.; Albayrak, N.; Zieren, J.; Tempfer, C.; Reymond, M.A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) as a neoadjuvant therapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J. Surg. Oncol. 2016, 14, 253. [Google Scholar] [CrossRef]
- Takei, S.; Kawazoe, A.; Shitara, K. The New Era of Immunotherapy in Gastric Cancer. Cancers 2022, 14, 1054. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 38, 1–10. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar]
- Sohn, B.H.; Hwang, J.-E.; Jang, H.-J.; Lee, H.-S.; Oh, S.C.; Shim, J.-J.; Lee, K.-W.; Kim, E.H.; Yim, S.Y.; Lee, S.H.; et al. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin. Cancer Res. 2017, 23, 4441–4449. [Google Scholar] [CrossRef]
- Kohlruss, M.; Grosser, B.; Krenauer, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Blank, S.; Novotny, A.; Reiche, M.; Schmidt, T.; Ismani, L.; et al. Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein–Barr virus infection and high- and low-microsatellite instability. J. Pathol. Clin. Res. 2019, 5, 227–239. [Google Scholar] [CrossRef]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival. JAMA Oncol. 2017, 3, 1197. [Google Scholar] [CrossRef]
- Sexton, R.E.; Hallak, M.N.A.; Uddin, M.H.; Diab, M.; Azmi, A.S. Gastric Cancer Heterogeneity and Clinical Outcomes. Technol. Cancer Res. Treat. 2020, 19, 1533033820935477. [Google Scholar] [CrossRef]
- Li, Y.; Feng, A.; Zheng, S.; Chen, C.; Lyu, J. Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control 2022, 29, 10732748221099227. [Google Scholar]
- Alsina, M.; Arrazubi, V.; Diez, M.; Tabernero, J. Current developments in gastric cancer: From molecular profiling to treatment strategy. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 155–170. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Onoyama, T.; Ishikawa, S.; Isomoto, H. Gastric cancer and genomics: Review of literature. J. Gastroenterol. 2022, 57, 505–516. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef]
- Morel, A.; Boisdron-Celle, M.; Fey, L.; Soulie, P.; Craipeau, M.C.; Traore, S.; Gamelin, E. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol. Cancer Ther. 2006, 5, 2895–2904. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, P.; Wang, J.; Lin, C.; Liu, H.; Li, H.; He, H.; Li, R.; Zhang, H.; Zhang, W. Somatic ARID1A mutation stratifies patients with gastric cancer to PD-1 blockade and adjuvant chemotherapy. Cancer Immunol. Immunother. 2023, 72, 1199–1208. [Google Scholar] [CrossRef]
- Brittain, H.K.; Scott, R.; Thomas, E. The rise of the genome and personalised medicine. Clin. Med. 2017, 17, 545–551. [Google Scholar] [CrossRef]
- De Thaye, E.; Van De Vijver, K.; Van Der Meulen, J.; Taminau, J.; Wagemans, G.; Denys, H.; Van Dorpe, J.; Berx, G.; Ceelen, W.; Van Bocxlaer, J.; et al. Establishment and characterization of a cell line and patient-derived xenograft (PDX) from peritoneal metastasis of low-grade serous ovarian carcinoma. Sci. Rep. 2020, 10, 6688. [Google Scholar] [CrossRef]
- Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front. Bioeng. Biotechnol. 2016, 4, 12. [Google Scholar] [CrossRef]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef]
- Ertel, A.; Verghese, A.; Byers, S.W.; Ochs, M.; Tozeren, A. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol. Cancer 2006, 5, 55. [Google Scholar] [CrossRef]
- Steele, N.G.; Chakrabarti, J.; Wang, J.; Biesiada, J.; Holokai, L.; Chang, J.; Nowacki, L.M.; Hawkins, J.; Mahe, M.; Sundaram, N.; et al. An Organoid-Based Preclinical Model of Human Gastric Cancer. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 161–184. [Google Scholar] [CrossRef]
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Bender, E. Q&A: Hans Clevers. Nature 2015, 521, S15. [Google Scholar]
- Seidlitz, T.; Koo, B.-K.; Stange, D.E. Gastric organoids—An in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ. 2021, 28, 68–83. [Google Scholar] [CrossRef]
- Song, H.; Park, J.Y.; Kim, J.-H.; Shin, T.-S.; Hong, S.A.; Huda, M.N.; Kim, B.J.; Kim, J.G. Establishment of Patient-Derived Gastric Cancer Organoid Model from Tissue Obtained by Endoscopic Biopsies. J. Korean Med. Sci. 2022, 37, e220. [Google Scholar] [CrossRef]
- Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell 2016, 18, 827–838. [Google Scholar] [CrossRef]
- Sachs, N.; Papaspyropoulos, A.; Zomer-Van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019, 38, e100300. [Google Scholar] [CrossRef]
- Dekkers, J.F.; Whittle, J.R.; Vaillant, F.; Chen, H.-R.; Dawson, C.; Liu, K.; Geurts, M.H.; Herold, M.J.; Clevers, H.; Lindeman, G.J.; et al. Modeling Breast Cancer Using CRISPR-Cas9–Mediated Engineering of Human Breast Organoids. JNCI J. Natl. Cancer Inst. 2020, 112, 540–544. [Google Scholar] [CrossRef]
- Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.-J.; Chun, S.-M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019, 10, 3991. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef]
- Narasimhan, V.; Wright, J.A.; Churchill, M.; Wang, T.; Rosati, R.; Lannagan, T.R.M.; Vrbanac, L.; Richardson, A.B.; Kobayashi, H.; Price, T.; et al. Medium-throughput Drug Screening of Patient-derived Organoids from Colorectal Peritoneal Metastases to Direct Personalized Therapy. Clin. Cancer Res. 2020, 26, 3662–3670. [Google Scholar] [CrossRef]
- Huo, C.; Zhang, X.; Gu, Y.; Wang, D.; Zhang, S.; Liu, T.; Li, Y.; He, W. Organoids: Construction and Application in Gastric Cancer. Biomolecules 2023, 13, 875. [Google Scholar] [CrossRef]
- Wallaschek, N.; Niklas, C.; Pompaiah, M.; Wiegering, A.; Germer, C.-T.; Kircher, S.; Brändlein, S.; Maurus, K.; Rosenwald, A.; Yan, H.H.N.; et al. Establishing Pure Cancer Organoid Cultures: Identification, Selection and Verification of Cancer Phenotypes and Genotypes. J. Mol. Biol. 2019, 431, 2884–2893. [Google Scholar] [CrossRef]
- Pang, M.-J.; Burclaff, J.R.; Jin, R.; Adkins-Threats, M.; Osaki, L.H.; Han, Y.; Mills, J.C.; Miao, Z.-F.; Wang, Z.-N. Gastric Organoids: Progress and Remaining Challenges. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 19–33. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wu, D.K.; Chen, J.B.; Tang, Y.M.; Jiang, F. Advances in the study of gastric organoids as disease models. World J. Gastrointest. Oncol. 2024, 16, 1725–1736. [Google Scholar] [CrossRef]
- Ren, X.; Chen, W.; Yang, Q.; Li, X.; Xu, L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J. Gastroenterol. Hepatol. 2022, 37, 1446–1454. [Google Scholar] [CrossRef]
- Verduin, M.; Hoeben, A.; De Ruysscher, D.; Vooijs, M. Patient-Derived Cancer Organoids as Predictors of Treatment Response. Front. Oncol. 2021, 11, 641980. [Google Scholar] [CrossRef]
- Bartfeld, S.; Bayram, T.; van de Wetering, M.; Huch, M.; Begthel, H.; Kujala, P.; Vries, R.; Peters, P.J.; Clevers, H. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 2015, 148, 126–136.e6. [Google Scholar] [CrossRef]
- Jiang, K.L.; Wang, X.X.; Liu, X.J.; Guo, L.K.; Chen, Y.Q.; Jia, Q.L.; Yang, K.M.; Ling, J.H. Success rate of current human-derived gastric cancer organoids establishment and influencing factors: A systematic review and meta-analysis. World J. Gastrointest. Oncol. 2024, 16, 1626–1646. [Google Scholar] [CrossRef]
- Schmäche, T.; Fohgrub, J.; Klimova, A.; Laaber, K.; Drukewitz, S.; Merboth, F.; Hennig, A.; Seidlitz, T.; Herbst, F.; Baenke, F.; et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol. Cancer 2024, 23, 10. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Zhu, L.; Huang, M.; Xie, Y.; Song, X.; Chen, Z.; Lau, H.C.-H.; Sung, J.J.-Y.; Xu, L.; et al. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep. Med. 2024, 5, 101627. [Google Scholar] [CrossRef]
- Seidlitz, T.; Merker, S.R.; Rothe, A.; Zakrzewski, F.; Von Neubeck, C.; Grützmann, K.; Sommer, U.; Schweitzer, C.; Schölch, S.; Uhlemann, H.; et al. Human gastric cancer modelling using organoids. Gut 2019, 68, 207–217. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Zhang, L.; Song, L.; Feng, D.; Peng, X.; Wu, M.; Zou, Y.; Wang, B.; Zhan, L.; et al. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J. Cancer Res. Clin. Oncol. 2019, 145, 2637–2647. [Google Scholar] [CrossRef]
- Yan, H.H.N.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.K.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O.; et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening. Cell Stem Cell 2018, 23, 882–897.e11. [Google Scholar] [CrossRef]
- Nanki, K.; Toshimitsu, K.; Takano, A.; Fujii, M.; Shimokawa, M.; Ohta, Y.; Matano, M.; Seino, T.; Nishikori, S.; Ishikawa, K.; et al. Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell 2018, 174, 856–869.e17. [Google Scholar] [CrossRef]
- Zu, M.; Hao, X.; Ning, J.; Zhou, X.; Gong, Y.; Lang, Y.; Xu, W.; Zhang, J.; Ding, S. Patient-derived organoid culture of gastric cancer for disease modeling and drug sensitivity testing. Biomed. Pharmacother. 2023, 163, 114751. [Google Scholar] [CrossRef]
- Miao, X.; Wang, C.; Chai, C.; Tang, H.; Hu, J.; Zhao, Z.; Luo, W.; Zhang, H.; Zhu, K.; Zhou, W.; et al. Establishment of gastric cancer organoid and its application in individualized therapy. Oncol. Lett. 2022, 24, 447. [Google Scholar] [CrossRef]
- Yoon, C.; Lu, J.; Kim, B.-J.; Cho, S.-J.; Kim, J.H.; Moy, R.H.; Ryeom, S.W.; Yoon, S.S. Patient-Derived Organoids from Locally Advanced Gastric Adenocarcinomas Can Predict Resistance to Neoadjuvant Chemotherapy. J. Gastrointest. Surg. 2023, 27, 666–676. [Google Scholar] [CrossRef]
- Gao, M.; Lin, M.; Rao, M.; Thompson, H.; Hirai, K.; Choi, M.; Georgakis, G.V.; Sasson, A.R.; Bucobo, J.C.; Tzimas, D.; et al. Development of Patient-Derived Gastric Cancer Organoids from Endoscopic Biopsies and Surgical Tissues. Ann. Surg. Oncol. 2018, 25, 2767–2775. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Wu, Q.; Kong, D.; Yang, Z.; Gu, Z.; Feng, L.; Zhang, K.; Cheng, S.; Tian, Y.; et al. Establishment of gastric signet ring cell carcinoma organoid for the therapeutic drug testing. Cell Death Discov. 2022, 8, 6. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, Y.; Jia, M.; Li, L.; Zhang, W.; Li, L.; Zhang, Z.; Liu, Y. A gastric cancer patient-derived three-dimensional cell spheroid culture model. Am. J. Cancer Res. 2023, 13, 964–975. [Google Scholar]
- McDonald, H.G.; Harper, M.M.; Hill, K.; Gao, A.; Solomon, A.L.; Bailey, C.J.; Lin, M.; Barry-Hundeyin, M.; Cavnar, M.J.; Mardini, S.H.; et al. Creation of EGD-Derived Gastric Cancer Organoids to Predict Treatment Responses. Cancers 2023, 15, 3036. [Google Scholar] [CrossRef]
- Xu, J.; Gong, J.; Li, M.; Kang, Y.; Ma, J.; Wang, X.; Liang, X.; Qi, X.; Yu, B.; Yang, J. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2024, 1868, 130566. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Han, R.; Wang, L.; Ma, W.; Zhang, W.; Lu, Z.; Wang, L. Establishment of patient-derived organoids and a characterization based drug discovery platform for treatment of gastric cancer. Cancer Cell Int. 2024, 24, 489. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [PubMed]
- Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F.; Kranenburg, O.W.; Roodhart, J.M.L. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. npj Precis. Oncol. 2021, 5, 30. [Google Scholar] [CrossRef]
- Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 2016, 7, 13837. [Google Scholar] [CrossRef]
- Becker, K.; Mueller, J.D.; Schulmacher, C.; Ott, K.; Fink, U.; Busch, R.; Böttcher, K.; Siewert, J.R.; Höfler, H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003, 98, 1521–1530. [Google Scholar] [CrossRef]
- Magré, L.; Verstegen, M.M.A.; Buschow, S.; van der Laan, L.J.W.; Peppelenbosch, M.; Desai, J. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. J. ImmunoTher. Cancer 2023, 11, e006290. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Niu, Q.; Mo, X.; Qui, M.; Ma, T.; Kuo, C.J.; Fu, H. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J. Mol. Cell Biol. 2020, 12, 630–643. [Google Scholar] [CrossRef]
- Hirt, C.K.; Booij, T.H.; Grob, L.; Simmler, P.; Toussaint, N.C.; Keller, D.; Taube, D.; Ludwig, V.; Goryachkin, A.; Pauli, C.; et al. Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment. Cell Genom. 2022, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- Tebon, P.J.; Wang, B.; Markowitz, A.L.; Davarifar, A.; Tsai, B.L.; Krawczuk, P.; Gonzalez, A.E.; Sartini, S.; Murray, G.F.; Nguyen, H.T.L.; et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat. Commun. 2023, 14, 3168. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, S.O.; Cappuccio, G.; Kruth, K.; Osenberg, S.; Khalil, S.M.; Méndez-Albelo, N.M.; Padmanabhan, K.; Wang, D.; Niciu, M.J.; Bhattacharyya, A.; et al. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Rep. 2024, 19, 796–816. [Google Scholar] [CrossRef] [PubMed]
- Recaldin, T.; Steinacher, L.; Gjeta, B.; Harter, M.F.; Adam, L.; Kromer, K.; Mendes, M.P.; Bellavista, M.; Nikolaev, M.; Lazzaroni, G.; et al. Human organoids with an autologous tissue-resident immune compartment. Nature 2024, 633, 165–173. [Google Scholar] [CrossRef]
- Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; Van De Haar, J.; Fanchi, L.F.; Slagter, M.; Van Der Velden, D.L.; Kaing, S.; Kelderman, S.; et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell 2018, 174, 1586–1598.e12. [Google Scholar] [CrossRef]
Year | Author | Days Post-Seeding When Drugs Were Administered * | Number of Days Drug-Treated | Single Chemotherapeutics Tested | Combination Chemotherapeutics Tested | Targeted Therapeutics Tested |
---|---|---|---|---|---|---|
2018 | Gao M et al. [58] | 2 | 2 | Cisplatin, oxaliplatin, and irinotecan | N/A | N/A |
2018 | Vlachogiannis G et al. [39] | 3 | ~6–8 | 5FU, irinotecan, oxaliplatin, etc. | 5FU+ cisplatin | Regorafenib, Lapatinib, Erlotinib, etc. |
2018 | Yan H et al. [53] | 1 | 6 | 5FU, carboplatin, doxorubicin, etc. | 5FU + cisplatin | Afatinib, Alpelisib, Crizotinib. Etc. |
2019 | Seidlitz T et al. [51] | 1 | 1–3 | 5-FU, oxaliplatin, irinotecan, Epirubicin, and docetaxel | 5FU + trastuzumab | Trastuzumab, palbociclib, and imatinib |
2019 | Steele NG et al. [29] | Unknown | 2 | Epirubicin, oxaliplatin, and 5FU | Epirubicin + oxaliplatin + 5FU | Mubritinib (as a combination) |
2019 | Li J et al. [52] | 3 | ~9 | Oxaliplatin, 5-FU, cis-platinum, docetaxel, irinotecan, Epirubicin, and paclitaxel | N/A | N/A |
2022 | Miao X et al. [56] | 1 | 4 | Paclitaxel, oxaliplatin and 5FU | N/A | N/A |
2022 | Li G et al. [59] | 3 | 3 | 5-FU, oxaliplatin, irinotecan, and docetaxel | N/A | N/A |
2023 | Yoon C et al. [57] | 3 | 4 | 5FU | FLOT and FOLFOX | N/A |
2023 | Zhang H et al. [60] | Unknown | 3 | 5FU | N/A | Trastuzumab |
2023 | Zu M et al. [55] | 4 | 3 | 5FU, oxaliplatin, cisplatin, irinotecan, paclitaxel, docetaxel, epirubicin, etc. | N/A | Entrectinib, Larotrectinib, DS-8201, and trastuzumab |
2023 | McDonald H et al. [61] | 2–3 | 2 | N/A | ECF, FLOT, FOLFIRI, and FOLFOX. | N/A |
2024 | Xu J et al. [62] | 2 | 4 | 5-FU, paclitaxel, oxaliplatin, irinotecan, and epirubicin | N/A | Napabucasin, afatinib, erlotinib, trametinib, flavopiridol, etc. |
2024 | Schmäche T et al. [49] | 1 | 6 | 5-FU, oxaliplatin and docetaxel | FLOT | N/A |
2024 | Zhao Y et al. [50] | 1 | 6 | 5-FU, oxaliplatin, cisplatin, paclitaxel, doxorubicin, and irinotecan | 5-FU + oxaliplatin | N/A |
2024 | Chen G et al. [63] | Unknown | Unknown | 5-FU + oxaliplatin + docetaxel | 5-FU + veliparib | Veliparib |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.N.; Wright, J.A.; Worthley, D.L.; Woods, S.L. Precision Medicine for Gastric Cancer: Current State of Organoid Drug Testing. Organoids 2024, 3, 266-280. https://doi.org/10.3390/organoids3040016
Silva TN, Wright JA, Worthley DL, Woods SL. Precision Medicine for Gastric Cancer: Current State of Organoid Drug Testing. Organoids. 2024; 3(4):266-280. https://doi.org/10.3390/organoids3040016
Chicago/Turabian StyleSilva, Tharindie N., Josephine A. Wright, Daniel L. Worthley, and Susan L. Woods. 2024. "Precision Medicine for Gastric Cancer: Current State of Organoid Drug Testing" Organoids 3, no. 4: 266-280. https://doi.org/10.3390/organoids3040016
APA StyleSilva, T. N., Wright, J. A., Worthley, D. L., & Woods, S. L. (2024). Precision Medicine for Gastric Cancer: Current State of Organoid Drug Testing. Organoids, 3(4), 266-280. https://doi.org/10.3390/organoids3040016