Precision Medicine for Peritoneal Carcinomatosis—Current Advances in Organoid Drug Testing and Clinical Applicability
Abstract
:1. Introduction
2. Overview of Organoid Technology and Its Relevance to Personalised Therapy
3. Current Methodologies for Organoid Drug Testing
3.1. Mimicking Hyperthermic Drug Treatment In Vitro
3.2. Optimising Drug Dose In Vitro for PDO Drug Sensitivity Testing
3.3. Assessing the Efficacy of Experimental Drugs Using PDO
3.4. Intra-Patient Peritoneal Tumour Heterogeneity
4. Correlating Patient Clinical Outcomes with Organoid Drug Responses
Year | Author | Source of Tissue Acquisition | Histology | Organoids Established | Establishment Success Rate | Clinical Response Correlation | No. of Patients Assessed for Clinical Response/Total No. of Recruited Patients | Total No. of Drugs Tested | Conditions |
---|---|---|---|---|---|---|---|---|---|
2024 | Liu et al. [45] | Resected tumour | Colorectal adenocarcinoma, peritoneal metastases | 32 | 55% | NR | NA | 2—Lobaplatin and oxaliplatin | Hyperthermic—42 °C for 30 and 60 min |
2024 | Varinelli et al. [31] | Resected tumour | Colorectal and signet cell mucinous adenocarcinoma | 22 | 78.6% | Yes–Progression-free survival (PFS), overall survival (OS), and radiological evidence | 5/12 | 4–Oxaliplatin, cisplatin/mitomycin C, mitomycin C and doxorubicin/cisplatin | All 4 chemotherapeutics were delivered at 37 °C and 42.5 °C |
2024 | Martinez-Quintanilla et al. [67] | Resected tumour | Pseudomyxoma peritonei | 50 | 49% | NR (correlated to drug response of organoids grown in mouse xenograft models only) | NA | 3—Encorafenib and targeted therapies | Normothermia |
2024 | Radomski et al. [58] | Resected tumour | Appendiceal, colorectal, small bowel, gastric, and adrenal | 6, 3, 2, 1 and 1 | 56% | Yes—Progression-free survival (PFS) and overall survival (OS) | 13/13 | 5—Mitomycin C, irinotecan, doxorubicin, oxaliplatin, cisplatin, MMC/cisplatin, oxaliplatin/irinotecan, cisplatin/doxorubicin | Normothermia |
2023 | Prieto et al. [1] | Resected tumour | Colorectal adenocarcinoma and peritoneal metastases | 1 | 100% | Yes—Progression-free survival (PFS), overall survival (OS), and RECIST | 1/1 | 3—Oxaliplatin, 5-Flourouracil, SN-38 | Normothermia |
2023 | Forsythe et al. [39] | Resected tumour | Peritoneal mesothelioma | 16 | 94.1% | Yes—Progression-free survival (PFS) and overall survival (OS) | 5/7 | 2—Mitomycin C and cisplatin | Delivered MMC (120 min) and cisplatin (90 min) at 37 °C and 42 °C |
2023 | Choi et al. [65] | Malignant ascites and pleural effusions | Pancreatic, gastric, and breast cancer | 39, 21, and 10, respectively | 48.7%, 33.3%, and 20.0%, respectively | Yes—Progression-free survival (PFS) and overall survival (OS) | 58/58 | 9-Flourouracil, oxaliplatin, irinotecan, Gemcitabine, Nab-paclitaxel, Erlotiib, epirubicin, cisplatin, carboplatin | Normothermic |
2022 | Liu et al. [66] | Resected tumour | Mucinous appendiceal adenocarcinoma | 1 | 100% | Yes—RECIST for radiological analysis | 1/1 | 8—5-Flourouracil, oxaliplatin, SN38, Apatinib, Dasatinib, Docetaxel, Regorafenib, Everolimus | Normothermic |
2022 | Laoukili et al. [51] | Malignant Ascites | Appendiceal peritoneal primary | 6 | 10.5% | NR | NA | 1—Oxaliplatin | Delivered at 42 °C for 60 min |
2021 | Zeng et al. [50] | Resected tumour | Colorectal Adenocarcinoma Pertioneal Metastases | 22 | 100% | Yes—Progression-free survival (PFS), overall survival (OS), and radiological data | 1/22 | 7—Mitomycin C, oxaliplatin, raltitrexed, 5-Flourouracil, lobaplatin, Gemcitabine, Abraxane | Delivered at 43 °C for 90min |
2020 | Forsythe et al. [40] | Resected tumour | Colorectal adenocarcinoma and appendiceal peritoneal metastases | 17 | 74% | NR | NA | 2—MMC and oxaliplatin | Hyperthermic chemotherapy delivered for 30 min (oxaliplatin) or 120min (MMC) at 37 °C and 42 °C |
2020 | Narsimhan et al. [29] | Resected tumour | Colorectal adenocarcinoma and peritoneal metastases | 19 | 68% | Yes—Progression-free survival (PFS) and overall survival (OS) | 9/19 | 87 chemotherapeutics and targeted therapies | Normothermic |
2019 | Votanopoulos et al. [68] | Resected tumour | LAMN and Adenocarcinoma from appendiceal origin | 6 | 75% | Yes—Progression-free survival (PFS) and overall survival (OS) | 3/12 | 5—FOLFOX, FOLFIRI, Regorafenib, 5-Flourouracil, oxaliplatin | Normothermic |
2019 | Phan et al. [64] | Resected tumour | High-grade serous ovarian carcinoma, peritoneal high-grade serous carcinoma, and ovarian sarcoma | 2, 1 and 1 | NR | Yes—Progression Free Survival (PFS) and Overall survival (OS) | 4/4 | 15 | Normothermic |
2019 | Ubink et al. [30] | Resected tumour | Colorectal adenocarcinoma and peritoneal metastases | 5 | 33% | NR | NA | 2—Mitomycin C and oxaliplatin | Hyperthermic chemotherapy delivered for 30 min (oxaliplatin) or 90 min (MMC) at 42 °C |
2017 | Roy et al. [38] | Resected tumour | Colorectal adenocarcinoma and peritoneal metastases | 4 | NR | NR | NA | 6—Mitomycin C, 5-Flourouracil, oxaliplatin, irinotecan, doxorubicin, paclitaxel | Delivered at 30/60/90 min at 37 °C and 43 °C |
5. Future Directions and Limitations for Personalising Treatment for Peritoneal Disease
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prieto, I.; Barbachano, A.; Rodriguez-Salas, N.; Vinal, D.; Cortes-Guiral, D.; Munoz, A.; Fernandez-Barral, A. Tailored chemotherapy for colorectal cancer peritoneal metastases based on a drug-screening platform in patient-derived organoids: A case report. J. Gastrointest. Oncol. 2023, 14, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Ceelen, W.; Van Nieuwenhove, Y.; Putte, D.V.; Pattyn, P. Neoadjuvant chemotherapy with bevacizumab may improve outcome after cytoreduction and hyperthermic intraperitoneal chemoperfusion (HIPEC) for colorectal carcinomatosis. Ann. Surg. Oncol. 2014, 21, 3023–3028. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.; Huo, Y.R.; Liauw, W.; Morris, D.L. Oxaliplatin versus Mitomycin C for HIPEC in colorectal cancer peritoneal carcinomatosis. Eur. J. Surg. Oncol. 2017, 43, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.S.; Johnson, P.; Romanes, J.P.; Freitag, H.E.; Spring, M.E.; Garcia-Henriquez, N.; Monson, J.R.T. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Colorectal Peritoneal Metastases: A Systematic Review. Dis. Colon. Rectum 2022, 65, 16–26. [Google Scholar] [CrossRef]
- Weisberger, A.S.; Levine, B.; Storaasli, J.P. Use of nitrogen mustard in treatment of serous effusions of neoplastic origin. J. Am. Med. Assoc. 1955, 159, 1704–1707. [Google Scholar] [CrossRef]
- Flessner, M.F. The transport barrier in intraperitoneal therapy. Am. J. Physiol. Ren. Physiol. 2005, 288, F433–F442. [Google Scholar] [CrossRef]
- Dedrick, R.L.; Myers, C.E.; Bungay, P.M.; DeVita, V.T., Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 1978, 62, 1–11. [Google Scholar]
- Jacquet, P.; Sugarbaker, P.H. Peritoneal-plasma barrier. Cancer Treat. Res. 1996, 82, 53–63. [Google Scholar] [CrossRef]
- van Eerden, R.A.G.; de Boer, N.L.; van Kooten, J.P.; Bakkers, C.; Dietz, M.V.; Creemers, G.M.; Buijs, S.M.; Bax, R.; de Man, F.M.; Lurvink, R.J.; et al. Phase I study of intraperitoneal irinotecan combined with palliative systemic chemotherapy in patients with colorectal peritoneal metastases. Br. J. Surg. 2023, 110, 1502–1510. [Google Scholar] [CrossRef]
- Alyami, M.; Hubner, M.; Grass, F.; Bakrin, N.; Villeneuve, L.; Laplace, N.; Passot, G.; Glehen, O.; Kepenekian, V. Pressurised intraperitoneal aerosol chemotherapy: Rationale, evidence, and potential indications. Lancet Oncol. 2019, 20, e368–e377. [Google Scholar] [CrossRef]
- Guchelaar, N.A.D.; Noordman, B.J.; Koolen, S.L.W.; Mostert, B.; Madsen, E.V.E.; Burger, J.W.A.; Brandt-Kerkhof, A.R.M.; Creemers, G.J.; de Hingh, I.; Luyer, M.; et al. Intraperitoneal Chemotherapy for Unresectable Peritoneal Surface Malignancies. Drugs 2023, 83, 159–180. [Google Scholar] [CrossRef] [PubMed]
- de Bree, E.; Tsiftsis, D.D. Principles of perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis. In Recent Results in Cancer Research; Springer: Berlin/Heidelberg, Germany, 2007; Volume 169, pp. 39–51. [Google Scholar] [CrossRef]
- Hasovits, C.; Clarke, S. Pharmacokinetics and pharmacodynamics of intraperitoneal cancer chemotherapeutics. Clin. Pharmacokinet. 2012, 51, 203–224. [Google Scholar] [CrossRef] [PubMed]
- de Bree, E.; Michelakis, D.; Stamatiou, D.; Romanos, J.; Zoras, O. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum 2017, 2, 47–62. [Google Scholar] [CrossRef] [PubMed]
- van Oudheusden, T.R.; Nienhuijs, S.W.; Luyer, M.D.; Nieuwenhuijzen, G.A.; Lemmens, V.E.; Rutten, H.J.; de Hingh, I.H. Incidence and treatment of recurrent disease after cytoreductive surgery and intraperitoneal chemotherapy for peritoneally metastasized colorectal cancer: A systematic review. Eur. J. Surg. Oncol. 2015, 41, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Ihemelandu, C.; Fernandez, S.; Sugarbaker, P.H. A Prognostic Model for Predicting Overall Survival in Patients with Peritoneal Surface Malignancy of an Appendiceal Origin Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2017, 24, 2266–2272. [Google Scholar] [CrossRef]
- Byrne, A.T.; Alferez, D.G.; Amant, F.; Annibali, D.; Arribas, J.; Biankin, A.V.; Bruna, A.; Budinska, E.; Caldas, C.; Chang, D.K.; et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 2017, 17, 254–268. [Google Scholar] [CrossRef]
- Weng, G.; Tao, J.; Liu, Y.; Qiu, J.; Su, D.; Wang, R.; Luo, W.; Zhang, T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett. 2023, 572, 216353. [Google Scholar] [CrossRef]
- Yoshida, G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020, 13, 4. [Google Scholar] [CrossRef]
- Xu, H.; Lyu, X.; Yi, M.; Zhao, W.; Song, Y.; Wu, K. Organoid technology and applications in cancer research. J. Hematol. Oncol. 2018, 11, 116. [Google Scholar] [CrossRef]
- Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient derived organoids model treatment response of metastatic GI cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Li, H.; Dai, W.; Xia, X.; Wang, R.; Zhao, J.; Han, L.; Mo, S.; Xiang, W.; Du, L.; Zhu, G.; et al. Modeling tumor development and metastasis using paired organoids derived from patients with colorectal cancer liver metastases. J. Hematol. Oncol. 2020, 13, 119. [Google Scholar] [CrossRef]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR Blockade Reverts Resistance to KRAS(G12C) Inhibition in Colorectal Cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef]
- Ganesh, K.; Wu, C.; O’Rourke, K.P.; Szeglin, B.C.; Zheng, Y.; Sauvé, C.E.; Adileh, M.; Wasserman, I.; Marco, M.R.; Kim, A.S.; et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 2019, 25, 1607–1614. [Google Scholar] [CrossRef]
- Narasimhan, V.; Wright, J.A.; Churchill, M.; Wang, T.; Rosati, R.; Lannagan, T.R.M.; Vrbanac, L.; Richardson, A.B.; Kobayashi, H.; Price, T.; et al. Medium-throughput Drug Screening of Patient-derived Organoids from Colorectal Peritoneal Metastases to Direct Personalized Therapy. Clin. Cancer Res. 2020, 26, 3662–3670. [Google Scholar] [CrossRef]
- Ubink, I.; Bolhaqueiro, A.C.F.; Elias, S.G.; Raats, D.A.E.; Constantinides, A.; Peters, N.A.; Wassenaar, E.C.E.; de Hingh, I.; Rovers, K.P.; van Grevenstein, W.M.U.; et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br. J. Surg. 2019, 106, 1404–1414. [Google Scholar] [CrossRef]
- Varinelli, L.; Battistessa, D.; Guaglio, M.; Zanutto, S.; Illescas, O.; Lorenc, E.J.; Pisati, F.; Kusamura, S.; Cattaneo, L.; Sabella, G.; et al. Colorectal carcinoma peritoneal metastases-derived organoids: Results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside. J. Exp. Clin. Cancer Res. 2024, 43, 132. [Google Scholar] [CrossRef]
- Gonzalez-Moreno, S.; Gonzalez-Bayon, L.A.; Ortega-Perez, G. Hyperthermic intraperitoneal chemotherapy: Rationale and technique. World J. Gastrointest. Oncol. 2010, 2, 68–75. [Google Scholar] [CrossRef] [PubMed]
- van Ruth, S.; Mathot, R.A.; Sparidans, R.W.; Beijnen, J.H.; Verwaal, V.J.; Zoetmulder, F.A. Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy. Clin. Pharmacokinet. 2004, 43, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Hompes, D.; D’Hoore, A.; Wolthuis, A.; Fieuws, S.; Mirck, B.; Bruin, S.; Verwaal, V. The use of Oxaliplatin or Mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: A comparative study. J. Surg. Oncol. 2014, 109, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.H.; Shen, P.; Russell, G.; Fenstermaker, J.; McWilliams, L.; Coldrun, F.M.; Levine, K.E.; Jones, B.T.; Levine, E.A. A Phase I Trial of Oxaliplatin for Intraperitoneal Hyperthermic Chemoperfusion for the Treatment of Peritoneal Surface Dissemination From Colorectal and Appendiceal Cancer. Ann. Surg. Oncol. 2008, 15, 2137–2145. [Google Scholar] [CrossRef]
- Elias, D.; Lefevre, J.H.; Chevalier, J.; Brouquet, A.; Marchal, F.; Classe, J.M.; Ferron, G.; Guilloit, J.M.; Meeus, P.; Goere, D.; et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J. Clin. Oncol. 2009, 27, 681–685. [Google Scholar] [CrossRef]
- van Ruth, S.; Verwaal, V.J.; Zoetmulder, F.A. Pharmacokinetics of intraperitoneal mitomycin C. Surg. Oncol. Clin. N. Am. 2003, 12, 771–780. [Google Scholar] [CrossRef]
- Roy, P.; Canet-Jourdan, C.; Annereau, M.; Zajac, O.; Gelli, M.; Broutin, S.; Mercier, L.; Paci, A.; Lemare, F.; Ducreux, M.; et al. Organoids as preclinical models to improve intraperitoneal chemotherapy effectiveness for colorectal cancer patients with peritoneal metastases: Preclinical models to improve HIPEC. Int. J. Pharm. 2017, 531, 143–152. [Google Scholar] [CrossRef]
- Forsythe, S.D.; Erali, R.A.; Edenhoffer, N.; Meeker, W.; Wajih, N.; Schaaf, C.R.; Laney, P.; Vanezuela, C.D.; Li, W.; Levine, E.A.; et al. Cisplatin exhibits superiority over MMC as a perfusion agent in a peritoneal mesothelioma patient specific organoid HIPEC platform. Sci. Rep. 2023, 13, 11640. [Google Scholar] [CrossRef]
- Forsythe, S.D.; Sasikumar, S.; Moaven, O.; Sivakumar, H.; Shen, P.; Levine, E.A.; Soker, S.; Skardal, A.; Votanopoulos, K.I. Personalized identification of optimal HIPEC perfusion protocol in patient-derived tumor organoid platform. Ann. Surg. Oncol. 2020, 27, 4950–4960. [Google Scholar] [CrossRef]
- Quenet, F.; Elias, D.; Roca, L.; Goere, D.; Ghouti, L.; Pocard, M.; Facy, O.; Arvieux, C.; Lorimier, G.; Pezet, D.; et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 256–266. [Google Scholar] [CrossRef]
- Kuijpers, A.M.; Hauptmann, M.; Aalbers, A.G.; Nienhuijs, S.W.; de Hingh, I.H.; Wiezer, M.J.; van Ramshorst, B.; van Ginkel, R.J.; Havenga, K.; Verwaal, V.J. Cytoreduction and hyperthermic intraperitoneal chemotherapy: The learning curve reassessed. Eur. J. Surg. Oncol. 2016, 42, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Serrano, A.; Manzanedo, I.; Perez-Viejo, E.; Gonzalez-Moreno, S.; Gonzalez-Bayon, L.; Arjona-Sanchez, A.; Torres, J.; Ramos, I.; Barrios, M.E.; et al. GECOP-MMC: Phase IV randomized clinical trial to evaluate the efficacy of hyperthermic intraperitoneal chemotherapy (HIPEC) with mytomicin-C after complete surgical cytoreduction in patients with colon cancer peritoneal metastases. BMC Cancer 2022, 22, 536. [Google Scholar] [CrossRef] [PubMed]
- Smabers, L.P.; Wensink, E.; Verissimo, C.S.; Koedoot, E.; Pitsa, K.C.; Huismans, M.A.; Higuera Baron, C.; Doorn, M.; Valkenburg-Van Iersel, L.B.; Cirkel, G.A.; et al. Organoids as a biomarker for personalized treatment in metastatic colorectal cancer: Drug screen optimization and correlation with patient response. J. Exp. Clin. Cancer Res. 2024, 43, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, H.; Deng, W.H.; Lan, J.Q.; Song, Z.W.; Zhu, Y.; Jing, J.L.; Cai, J. Sensitivity of colorectal cancer organoids tohyperthermic intraperitoneal chemotherapy withlobaplatin. Chin. Med. Assoc. Publ. House 2024, 27, 486–494. [Google Scholar] [CrossRef]
- Yap, T.A.; Fontana, E.; Lee, E.K.; Spigel, D.R.; Hojgaard, M.; Lheureux, S.; Mettu, N.B.; Carneiro, B.A.; Carter, L.; Plummer, R.; et al. Camonsertib in DNA damage response-deficient advanced solid tumors: Phase 1 trial results. Nat. Med. 2023, 29, 1400–1411. [Google Scholar] [CrossRef]
- Middleton, M.R.; Dean, E.; Evans, T.R.J.; Shapiro, G.I.; Pollard, J.; Hendriks, B.S.; Falk, M.; Diaz-Padilla, I.; Plummer, R. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine +/− cisplatin in patients with advanced solid tumours. Br. J. Cancer 2021, 125, 510–519. [Google Scholar] [CrossRef]
- Tsavaris, N.; Kosmas, C.; Vadiaka, M.; Koufos, C. Raltitrexed (Tomudex) administration in patients with relapsed metastatic colorectal cancer after weekly irinotecan/5-Fluorouracil/Leucovorin chemotherapy. BMC Cancer 2002, 2, 2. [Google Scholar] [CrossRef]
- Zalcberg, J.R.; Cunningham, D.; Van Cutsem, E.; Francois, E.; Schornagel, J.; Adenis, A.; Green, M.; Iveson, A.; Azab, M.; Seymour, I. ZD1694: A novel thymidylate synthase inhibitor with substantial activity in the treatment of patients with advanced colorectal cancer. Tomudex Colorectal Study Group. J. Clin. Oncol. 1996, 14, 716–721. [Google Scholar] [CrossRef]
- Zeng, L.; Liao, Q.; Zhao, Q.; Jiang, S.; Yang, X.; Tang, H.; He, Q.; Yang, X.; Fang, S.; He, J.; et al. Raltitrexed as a synergistic hyperthermia chemotherapy drug screened in patient-derived colorectal cancer organoids. Cancer Biol. Med. 2021, 18, 750–762. [Google Scholar] [CrossRef]
- Laoukili, J.; Constantinides, A.; Wassenaar, E.C.E.; Elias, S.G.; Raats, D.A.E.; van Schelven, S.J.; van Wettum, J.; Volckmann, R.; Koster, J.; Huitema, A.D.R.; et al. Peritoneal metastases from colorectal cancer belong to Consensus Molecular Subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity. Br. J. Cancer 2022, 126, 1824–1833. [Google Scholar] [CrossRef]
- Helderman, R.; Loke, D.R.; Tanis, P.J.; Tuynman, J.B.; Ceelen, W.; de Hingh, I.H.; van der Speeten, K.; Franken, N.A.P.; Oei, A.L.; Kok, H.P.; et al. Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers 2021, 13, 3430. [Google Scholar] [CrossRef] [PubMed]
- Miailhe, G.; Arfi, A.; Mirshahi, M.; Eveno, C.; Pocard, M.; Touboul, C. A new animal model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing mice in the treatment of peritoneal carcinomatosis of ovarian origin. J. Visc. Surg. 2018, 155, 183–189. [Google Scholar] [CrossRef]
- Wagner, B.R.; Adamus, A.L.; Sonnecken, D.; Vahdad, R.; Jank, P.; Denkert, C.; Mahnken, A.H.; Seitz, G. Establishment of a new valid animal model for the evaluation of hyperthermic intraperitoneal chemotherapy (HIPEC) in pediatric rhabdomyosarcoma. Pediatr. Blood Cancer 2021, 68, e29202. [Google Scholar] [CrossRef] [PubMed]
- McCabe-Lankford, E.; Peterson, M.; McCarthy, B.; Brown, A.J.; Terry, B.; Galarza-Paez, L.; Levi-Polyachenko, N. Murine Models of Intraperitoneal Perfusion for Disseminated Colorectal Cancer. J. Surg. Res. 2019, 233, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Ong, J.C.; Chia, D.K.; Teo, M.C.; Tan, Q.X.; Ng, G.; Tan, J.W.; Ma, H.; Ong, X.; Tay, S.T.; et al. Transcriptional intra-tumoral heterogeneity of putative therapeutic targets in colorectal cancer peritoneal metastases. Cancer Res. 2024, 84, 2759. [Google Scholar] [CrossRef]
- Siesing, C.; Petersson, A.; Ulfarsdottir, T.; Chattopadhyay, S.; Nodin, B.; Eberhard, J.; Brandstedt, J.; Syk, I.; Gisselsson, D.; Jirstrom, K. Delineating the intra-patient heterogeneity of molecular alterations in treatment-naive colorectal cancer with peritoneal carcinomatosis. Mod. Pathol. 2022, 35, 979–988. [Google Scholar] [CrossRef]
- Radomski, S.N.; Dunworth, M.; West, J.J.; Greer, J.B.; Johnston, F.M.; Ewald, A.J. Intra- and Interpatient Drug Response Heterogeneity Exist in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Nongynecologic Cancers. Ann. Surg. Oncol. 2024, 31, 1996–2007. [Google Scholar] [CrossRef]
- Ooft, S.N.; Weeber, F.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van Werkhoven, E.; Schipper, L.; Hoes, L.; Vis, D.J.; van de Haar, J.; et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019, 11, eaay2574. [Google Scholar] [CrossRef]
- Picca, F.; Giannotta, C.; Tao, J.; Giordanengo, L.; Munir, H.M.W.; Botta, V.; Merlini, A.; Mogavero, A.; Garbo, E.; Poletto, S.; et al. From Cancer to Immune Organoids: Innovative Preclinical Models to Dissect the Crosstalk between Cancer Cells and the Tumor Microenvironment. Int. J. Mol. Sci. 2024, 25, 10823. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Mazzei, M.A.; Bagnacci, G.; Gentili, F.; Nigri, A.; Pelini, V.; Vindigni, C.; Mazzei, F.G.; Baiocchi, G.L.; Pittiani, F.; Morgagni, P.; et al. Gastric Cancer Maximum Tumour Diameter Reduction Rate at CT Examination as a Radiological Index for Predicting Histopathological Regression after Neoadjuvant Treatment: A Multicentre GIRCG Study. Gastroenterol. Res. Pract. 2018, 2018, 1794524. [Google Scholar] [CrossRef] [PubMed]
- Fuse, N.; Nagahisa-Oku, E.; Doi, T.; Sasaki, T.; Nomura, S.; Kojima, T.; Yano, T.; Tahara, M.; Yoshino, T.; Ohtsu, A. Effect of RECIST revision on classification of target lesions and overall response in advanced gastric cancer patients. Gastric Cancer 2012, 16, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.; Hong, J.J.; Tofig, B.; Mapua, M.; Elashoff, D.; Moatamed, N.A.; Huang, J.; Memarzadeh, S.; Damoiseaux, R.; Soragni, A. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. 2019, 2, 78. [Google Scholar] [CrossRef]
- Choi, W.; Kim, Y.H.; Woo, S.M.; Yu, Y.; Lee, M.R.; Lee, W.J.; Chun, J.W.; Sim, S.H.; Chae, H.; Shim, H.; et al. Establishment of Patient-Derived Organoids Using Ascitic or Pleural Fluid from Cancer Patients. Cancer Res. Treat. 2023, 55, 1077–1086. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, X.; Xia, Y.; Huang, W.; Chen, W.; Xu, J.; Chen, S.; Wang, H.; Wei, J.; Li, H.; et al. Organoids From Mucinous Appendiceal Adenocarcinomas as High-Fidelity Models for Individual Therapy. Front. Med. 2022, 9, 829033. [Google Scholar] [CrossRef]
- Martinez-Quintanilla, J.; Cabot, D.; Sabia, D.; Arques, O.; Verges, J.; Chicote, I.; Bijelic, L.; Cabellos, L.; Alcántara, A.M.; Ramos, I.; et al. Precision Oncology and Systemic Targeted Therapy in Pseudomyxoma Peritonei. Clin. Cancer Res. 2024, 30, 4082–4099. [Google Scholar] [CrossRef]
- Votanopoulos, K.I.; Mazzocchi, A.; Sivakumar, H.; Forsythe, S.; Aleman, J.; Levine, E.A.; Skardal, A. Appendiceal Cancer Patient-Specific Tumor Organoid Model for Predicting Chemotherapy Efficacy Prior to Initiation of Treatment: A Feasibility Study. Ann. Surg. Oncol. 2019, 26, 139–147. [Google Scholar] [CrossRef]
- Bhatt, A.; de Hingh, I.; Van Der Speeten, K.; Hubner, M.; Deraco, M.; Bakrin, N.; Villeneuve, L.; Kusamura, S.; Glehen, O. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann. Surg. Oncol. 2021, 28, 9098–9113. [Google Scholar] [CrossRef]
- Baratti, D.; Kusamura, S.; Milione, M.; Bruno, F.; Guaglio, M.; Deraco, M. Advanced epithelial ovarian cancer: Oncologic and surgical considerations and peritoneal tumor heterogeneity for personalized treatment. J. Gynecol. Oncol. 2016, 27. [Google Scholar]
- Erali, R.A.; Forsythe, S.D.; Gironda, D.J.; Schaaf, C.R.; Wajih, N.; Soker, S.; Votanopoulos, K.I. Utilizing Patient-Derived Organoids in the Management of Colorectal Cancer with Peritoneal Metastases: A Review of Current Literature. J. Gastrointest. Cancer 2023, 54, 712–719. [Google Scholar] [CrossRef]
- Qin, R.X.; Lim, J.H.; Ly, J.; Fischer, J.; Smith, N.; Karalus, M.; Wu, L.; van Dalen, R.; Lolohea, S. Long-term survival following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in Waikato, Aotearoa New Zealand: A 12-year experience. ANZ J. Surg. 2024, 94, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Hsu, C.; Wang, Z.; Natesh, N.R.; Millen, R.; Negrete, M.; Giroux, N.; Rivera, G.O.; Dohlman, A.; Bose, S.; et al. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 2022, 29, 905–917.e6. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Kaye, S.B. Ovarian cancer: Strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 2003, 3, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Clevers, D.T.H. Cancer modeling meets human organoid technology. Science 2019, 364, 952–955. [Google Scholar]
- Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F.; Kranenburg, O.W.; Roodhart, J.M.L. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021, 5, 30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, H.; Wright, J.A.; Worthley, D.L.; Murphy, E.; Woods, S.L. Precision Medicine for Peritoneal Carcinomatosis—Current Advances in Organoid Drug Testing and Clinical Applicability. Organoids 2025, 4, 2. https://doi.org/10.3390/organoids4010002
Kaur H, Wright JA, Worthley DL, Murphy E, Woods SL. Precision Medicine for Peritoneal Carcinomatosis—Current Advances in Organoid Drug Testing and Clinical Applicability. Organoids. 2025; 4(1):2. https://doi.org/10.3390/organoids4010002
Chicago/Turabian StyleKaur, Harleen, Josephine A. Wright, Daniel L. Worthley, Elizabeth Murphy, and Susan L. Woods. 2025. "Precision Medicine for Peritoneal Carcinomatosis—Current Advances in Organoid Drug Testing and Clinical Applicability" Organoids 4, no. 1: 2. https://doi.org/10.3390/organoids4010002
APA StyleKaur, H., Wright, J. A., Worthley, D. L., Murphy, E., & Woods, S. L. (2025). Precision Medicine for Peritoneal Carcinomatosis—Current Advances in Organoid Drug Testing and Clinical Applicability. Organoids, 4(1), 2. https://doi.org/10.3390/organoids4010002