Phage Anti-Pycsar Proteins Efficiently Degrade β-Lactam Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8.
- Mann, A.; Nehra, K.; Rana, J.S.; Dahiya, T. Antibiotic Resistance in Agriculture: Perspectives on Upcoming Strategies to Overcome Upsurge in Resistance. Curr. Res. Microb. Sci. 2021, 2, 100030. [Google Scholar] [CrossRef]
- Bahr, G.; González, L.J.; Vila, A.J. Metallo-β-Lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem. Rev. 2021, 121, 7957–8094. [Google Scholar] [CrossRef]
- Bush, K. The ABCD’s of β-Lactamase Nomenclature. J. Infect. Chemother. 2013, 19, 549–559. [Google Scholar] [CrossRef]
- Brem, J.; Panduwawala, T.; Hansen, J.U.; Hewitt, J.; Liepins, E.; Donets, P.; Espina, L.; Farley, A.J.M.; Shubin, K.; Campillos, G.G.; et al. Imitation of β-Lactam Binding Enables Broad-Spectrum Metallo-β-Lactamase Inhibitors. Nat. Chem. 2022, 14, 15–24. [Google Scholar] [CrossRef]
- Arjomandi, O.K.; Hussein, W.M.; Vella, P.; Yusof, Y.; Sidjabat, H.E.; Schenk, G.; McGeary, R.P. Design, Synthesis, and in Vitro and Biological Evaluation of Potent Amino Acid-Derived Thiol Inhibitors of the Metallo-β-Lactamase IMP-1. Eur. J. Med. Chem. 2016, 114, 318–327. [Google Scholar] [CrossRef]
- McGeary, R.P.; Tan, D.T.C.; Selleck, C.; Monteiro Pedroso, M.; Sidjabat, H.E.; Schenk, G. Structure-Activity Relationship Study and Optimisation of 2-Aminopyrrole-1-Benzyl-4,5-Diphenyl-1H-Pyrrole-3-Carbonitrile as a Broad Spectrum Metallo-β-Lactamase Inhibitor. Eur. J. Med. Chem. 2017, 137, 351–364. [Google Scholar] [CrossRef]
- Neu, H.C.; Fu, K.P. Clavulanic Acid, a Novel Inhibitor of β-Lactamases. Antimicrob. Agents Chemother. 1978, 14, 650–655. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Krco, S.; Davis, S.J.; Joshi, P.; Wilson, L.A.; Monteiro Pedroso, M.; Douw, A.; Schofield, C.J.; Hugenholtz, P.; Schenk, G.; Morris, M.T. Structure, Function, and Evolution of Metallo-β-Lactamases from the B3 Subgroup—Emerging Targets to Combat Antibiotic Resistance. Front. Chem. 2023, 11, 1196073. [Google Scholar] [CrossRef]
- Pedroso, M.M.; Waite, D.W.; Melse, O.; Wilson, L.; Mitić, N.; McGeary, R.P.; Antes, I.; Guddat, L.W.; Hugenholtz, P.; Schenk, G. Broad Spectrum Antibiotic-Degrading Metallo-β-Lactamases Are Phylogenetically Diverse. Protein Cell 2020, 11, 613–617. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, M.M.; Selleck, C.; Enculescu, C.; Harmer, J.R.; Mitić, N.; Craig, W.R.; Helweh, W.; Hugenholtz, P.; Tyson, G.W.; Tierney, D.L.; et al. Characterization of a Highly Efficient Antibiotic-Degrading Metallo-β-Lactamase Obtained from an Uncultured Member of a Permafrost Community. Metallomics 2017, 9, 1157–1168. [Google Scholar] [CrossRef]
- Vella, P.; Miraula, M.; Phelan, E.; Leung, E.W.W.; Ely, F.; Ollis, D.L.; McGeary, R.P.; Schenk, G.; Mitić, N. Identification and Characterization of an Unusual Metallo-β-Lactamase from Serratia Proteamaculans. JBIC J. Biol. Inorg. Chem. 2013, 18, 855–863. [Google Scholar] [CrossRef]
- Yong, D.; Toleman Mark, A.; Bell, J.; Ritchie, B.; Pratt, R.; Ryley, H.; Walsh Timothy, R. Genetic and Biochemical Characterization of an Acquired Subgroup B3 Metallo-β-Lactamase Gene, blaAIM-1, and Its Unique Genetic Context in Pseudomonas aeruginosa from Australia. Antimicrob. Agents Chemother. 2012, 56, 6154–6159. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, W.; Zhang, J.; Li, Y.; Zheng, P.; Zhang, H. Draft Genome Sequence of a Metallo-β-Lactamase (Bla(AIM-1))-Producing Klebsiella pneumoniae ST1916 Isolated from a Patient with Chronic Diarrhoea. J. Glob. Antimicrob. Resist. 2019, 16, 165–167. [Google Scholar] [CrossRef]
- Carfi, A.; Pares, S.; Duée, E.; Galleni, M.; Duez, C.; Frère, J.M.; Dideberg, O. The 3-D Structure of a Zinc Metallo-Beta-Lactamase from Bacillus Cereus Reveals a New Type of Protein Fold. EMBO J. 1995, 14, 4914–4921. [Google Scholar] [CrossRef]
- Dominski, Z. Nucleases of the Metallo-Beta-Lactamase Family and Their Role in DNA and RNA Metabolism. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 67–93. [Google Scholar] [CrossRef]
- Dominski, Z.; Carpousis, A.J.; Clouet-d’Orval, B. Emergence of the β-CASP Ribonucleases: Highly Conserved and Ubiquitous Metallo-Enzymes Involved in Messenger RNA Maturation and Degradation. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2013, 1829, 532–551. [Google Scholar] [CrossRef]
- Pettinati, I.; Brem, J.; Lee, S.Y.; McHugh, P.J.; Schofield, C.J. The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends BioChem. Sci. 2016, 41, 338–355. [Google Scholar] [CrossRef]
- Beaudoin, G.A.W.; Li, Q.; Bruner, S.D.; Hanson, A.D. An Unusual Diphosphatase from the PhnP Family Cleaves Reactive FAD Photoproducts. Biochem. J. 2018, 475, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Castillo Villamizar Genis, A.; Funkner, K.; Nacke, H.; Foerster, K.; Daniel, R.; Sawers, G. Functional Metagenomics Reveals a New Catalytic Domain, the Metallo-β-Lactamase Superfamily Domain, Associated with Phytase Activity. mSphere 2019, 4, e00167-19. [Google Scholar] [CrossRef]
- Ng, T.K.; Gahan, L.R.; Schenk, G.; Ollis, D.L. Altering the Substrate Specificity of Methyl Parathion Hydrolase with Directed Evolution. Arch. BioChem. Biophys. 2015, 573, 59–68. [Google Scholar] [CrossRef]
- Fernandez, F.J.; Garces, F.; López-Estepa, M.; Aguilar, J.; Baldomà, L.; Coll, M.; Badia, J.; Vega, M.C. The UlaG Protein Family Defines Novel Structural and Functional Motifs Grafted on an Ancient RNase Fold. BMC Evol. Biol. 2011, 11, 273. [Google Scholar] [CrossRef]
- Miraula, M.; Whitaker, J.J.; Schenk, G.; Mitić, N. β-Lactam Antibiotic-Degrading Enzymes from Non-Pathogenic Marine Organisms: A Potential Threat to Human Health. J. Biol. Inorg. Chem. 2015, 20, 639–651. [Google Scholar] [CrossRef]
- Au, S.X.; Dzulkifly, N.S.; Muhd Noor, N.D.; Matsumura, H.; Raja Abdul Rahman, R.N.Z.; Normi, Y.M. Dual Activity BLEG-1 from Bacillus lehensis G1 Revealed Structural Resemblance to B3 Metallo-β-Lactamase and Glyoxalase II: An Insight into Its Enzyme Promiscuity and Evolutionary Divergence. Int. J. Mol. Sci. 2021, 22, 9377. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Normi, Y.M.; Leow, A.T.C.; Salleh, A.B.; Murad, A.M.A.; Mahadi, N.M.; Rahman, M.B.A. Danger Lurking in the “Unknowns”: Structure-to-Function Studies of Hypothetical Protein Bleg1_2437 from Bacillus lehensis G1 Alkaliphile Revealed an Evolutionary Divergent B3 Metallo-Beta-Lactamase. J. Biochem. 2017, 161, 167–186. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Li, S.; Jiang, J. A Novel Hydrolytic Dehalogenase for the Chlorinated Aromatic Compound Chlorothalonil. J. Bacteriol. 2010, 192, 2737–2745. [Google Scholar] [CrossRef]
- Barbeyron, T.; Potin, P.; Richard, C.; Collin, O.; Kloareg, B. Arylsulphatase from Alteromonas carrageenovora. Microbiology 1995, 141 Pt. 11, 2897–2904. [Google Scholar] [CrossRef]
- Hagelueken, G.; Adams Thorsten, M.; Wiehlmann, L.; Widow, U.; Kolmar, H.; Tümmler, B.; Heinz Dirk, W.; Schubert, W.-D. The Crystal Structure of SdsA1, an Alkylsulfatase from Pseudomonas aeruginosa, Defines a Third Class of Sulfatases. Proc. Natl. Acad. Sci. USA 2006, 103, 7631–7636. [Google Scholar] [CrossRef]
- Muok, A.R.; Deng, Y.; Gumerov, V.M.; Chong, J.E.; DeRosa, J.R.; Kurniyati, K.; Coleman, R.E.; Lancaster, K.M.; Li, C.; Zhulin, I.B.; et al. A Di-Iron Protein Recruited as an Fe[II] and Oxygen Sensor for Bacterial Chemotaxis Functions by Stabilizing an Iron-Peroxy Species. Proc. Natl. Acad. Sci. USA 2019, 116, 14955–14960. [Google Scholar] [CrossRef]
- Morán-Barrio, J.; Lisa, M.-N.; Larrieux, N.; Drusin, S.I.; Viale, A.M.; Moreno, D.M.; Buschiazzo, A.; Vila, A.J. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Antimicrob. Agents Chemother. 2016, 60, 6013–6022. [Google Scholar] [CrossRef] [PubMed]
- Selleck, C.; Larrabee, J.A.; Harmer, J.; Guddat, L.W.; Mitić, N.; Helweh, W.; Ollis, D.L.; Craig, W.R.; Tierney, D.L.; Monteiro Pedroso, M.; et al. AIM-1: An Antibiotic-Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chem.-Eur. J. 2016, 22, 17704–17714. [Google Scholar] [CrossRef]
- Wilson, L.A.; Knaven, E.G.; Morris, M.T.; Monteiro Pedroso, M.; Schofield, C.J.; Brück, T.B.; Boden, M.; Waite, D.W.; Hugenholtz, P.; Guddat, L.; et al. Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid. Antimicrob. Agents Chemother. 2021, 65, e00936-21. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef]
- Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J.-M.; Dideberg, O. A Metallo-β-Lactamase Enzyme in Action: Crystal Structures of the Monozinc Carbapenemase CphA and Its Complex with Biapenem. J. Mol. Biol. 2005, 345, 785–795. [Google Scholar] [CrossRef]
- Diene, S.M.; Pinault, L.; Keshri, V.; Armstrong, N.; Khelaifia, S.; Chabrière, E.; Caetano-Anolles, G.; Colson, P.; La Scola, B.; Rolain, J.-M.; et al. Human Metallo-β-Lactamase Enzymes Degrade Penicillin. Sci. Rep. 2019, 9, 12173. [Google Scholar] [CrossRef]
- Diene, S.M.; Pinault, L.; Armstrong, N.; Azza, S.; Keshri, V.; Khelaifia, S.; Chabrière, E.; Caetano-Anolles, G.; Rolain, J.-M.; Pontarotti, P.; et al. Dual RNase and β-Lactamase Activity of a Single Enzyme Encoded in Archaea. Life 2020, 10, 280. [Google Scholar] [CrossRef]
- Lee, J.H.; Takahashi, M.; Jeon, J.H.; Kang, L.-W.; Seki, M.; Park, K.S.; Hong, M.-K.; Park, Y.S.; Kim, T.Y.; Karim, A.M.; et al. Dual Activity of PNGM-1 Pinpoints the Evolutionary Origin of Subclass B3 Metallo-β-Lactamases: A Molecular and Evolutionary Study. Emerg. Microbes Infect. 2019, 8, 1688–1700. [Google Scholar] [CrossRef]
- Miraula, M.; Schenk, G.; Mitić, N. Promiscuous Metallo-β-Lactamases: MIM-1 and MIM-2 May Play an Essential Role in Quorum Sensing Networks. J. Inorg. Biochem. 2016, 162, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, P.; Kobus, S.; Gertzen, C.G.W.; Hoeppner, A.; Holzscheck, N.; Strunk, C.H.; Huber, H.; Jaeger, K.-E.; Gohlke, H.; Kovacic, F.; et al. A Promiscuous Ancestral Enzyme’s Structure Unveils Protein Variable Regions of the Highly Diverse Metallo-β-Lactamase Family. Commun. Biol. 2021, 4, 132. [Google Scholar] [CrossRef] [PubMed]
- Colson, P.; Pinault, L.; Azza, S.; Armstrong, N.; Chabriere, E.; La Scola, B.; Pontarotti, P.; Raoult, D. A Protein of the Metallo-Hydrolase/Oxidoreductase Superfamily with Both Beta-Lactamase and Ribonuclease Activity Is Linked with Translation in Giant Viruses. Sci. Rep. 2020, 10, 21685. [Google Scholar] [CrossRef]
- Park, K.S.; Hong, M.-K.; Jeon, J.W.; Kim, J.H.; Jeon, J.H.; Lee, J.H.; Kim, T.Y.; Karim, A.M.; Malik, S.K.; Kang, L.-W.; et al. The Novel Metallo-β-Lactamase PNGM-1 from a Deep-Sea Sediment Metagenome: Crystallization and X-Ray Crystallographic Analysis. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2018, 74, 644–649. [Google Scholar] [CrossRef]
- Miller, S.Y.; Colquhoun, J.M.; Perl, A.L.; Chamakura, K.R.; Kuty Everett, G.F. Complete Genome of Bacillus subtilis Myophage Grass. Genome Announc. 2013, 1, e00857-13. [Google Scholar] [CrossRef] [PubMed]
- Willms, I.M.; Hoppert, M.; Hertel, R. Characterization of Bacillus subtilis Viruses vB_BsuM-Goe2 and vB_BsuM-Goe3. Viruses 2017, 9, 146. [Google Scholar] [CrossRef]
- Youle, M.; Pantéa, L. Thinking Like a Phage: The Genius of the Viruses That Infect Bacteria and Archaea; Wholon: San Diego, CA, USA, 2017; pp. 1–4. [Google Scholar]
- Hobbs, S.J.; Wein, T.; Lu, A.; Morehouse, B.R.; Schnabel, J.; Leavitt, A.; Yirmiya, E.; Sorek, R.; Kranzusch, P.J. Phage Anti-CBASS and Anti-Pycsar Nucleases Subvert Bacterial Immunity. Nature 2022, 605, 522–526. [Google Scholar] [CrossRef]
- Cohen, D.; Melamed, S.; Millman, A.; Shulman, G.; Oppenheimer-Shaanan, Y.; Kacen, A.; Doron, S.; Amitai, G.; Sorek, R. Cyclic GMP–AMP Signalling Protects Bacteria against Viral Infection. Nature 2019, 574, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Tal, N.; Morehouse, B.R.; Millman, A.; Stokar-Avihail, A.; Avraham, C.; Fedorenko, T.; Yirmiya, E.; Herbst, E.; Brandis, A.; Mehlman, T.; et al. Cyclic CMP and Cyclic UMP Mediate Bacterial Immunity against Phages. Cell 2021, 184, 5728–5739.e16. [Google Scholar] [CrossRef]
- Lee, S.Y.; Brem, J.; Pettinati, I.; Claridge, T.D.W.; Gileadi, O.; Schofield, C.J.; McHugh, P.J. Cephalosporins Inhibit Human Metallo β-Lactamase Fold DNA Repair Nucleases SNM1A and SNM1B/Apollo. Chem. Commun. 2016, 52, 6727–6730. [Google Scholar] [CrossRef]
- Lee, J.H.; Takahashi, M.; Jeon, J.H.; Kang, L.-W.; Seki, M.; Park, K.S.; Hong, M.-K.; Park, Y.S.; Kim, T.Y.; Karim, A.M.; et al. Dual Activity of PNGM-1, a Metallo-β-Lactamase and tRNase Z, Pinpoints the Evolutionary Origin of Subclass B3 Metallo-β-Lactamases. bioRxiv 2019, 8, 575373. [Google Scholar] [CrossRef]
- Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-Lactamase (NDM): A Threat to Public Health. BMC Microbiol. 2017, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Malgapo, M.I.P.; Safadi, J.M.; Linder, M.E. Metallo-β-Lactamase Domain-Containing Protein 2 Is S-Palmitoylated and Exhibits Acyl-CoA Hydrolase Activity. J. Biol. Chem. 2021, 296, 100106. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Rozewicki, J.; Li, S.; Amada, K.M.; Standley, D.M.; Katoh, K. MAFFT-DASH: Integrated Protein Sequence and Structural Alignment. Nucleic Acids Res. 2019, 47, W5–W10. [Google Scholar] [CrossRef] [PubMed]
- Bottoni, C.; Perilli, M.; Marcoccia, F.; Piccirilli, A.; Pellegrini, C.; Colapietro, M.; Sabatini, A.; Celenza, G.; Kerff, F.; Amicosante, G.; et al. Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems. Antimicrob. Agents Chemother. 2016, 60, 3123–3126. [Google Scholar] [CrossRef]
- Horsfall, L.E.; Izougarhane, Y.; Lassaux, P.; Selevsek, N.; Liénard, B.M.R.; Poirel, L.; Kupper, M.B.; Hoffmann, K.M.; Frère, J.-M.; Galleni, M.; et al. Broad Antibiotic Resistance Profile of the Subclass B3 Metallo-β-Lactamase GOB-1, a Di-Zinc Enzyme. FEBS J. 2011, 278, 1252–1263. [Google Scholar] [CrossRef]
- Segatore, B.; Massidda, O.; Satta, G.; Setacci, D.; Amicosante, G. High Specificity of cphA-Encoded Metallo-Beta-Lactamase from Aeromonas hydrophila AE036 for Carbapenems and Its Contribution to Beta-Lactam Resistance. Antimicrob. Agents Chemother. 1993, 37, 1324–1328. [Google Scholar] [CrossRef]
- Bebrone, C.; Anne, C.; De Vriendt, K.; Devreese, B.; Rossolini, G.M.; Van Beeumen, J.; Frère, J.-M.; Galleni, M. Dramatic Broadening of the Substrate Profile of the Aeromonas Hydrophila CphA Metallo-β-Lactamase by Site-Directed Mutagenesis. J. Biol. Chem. 2005, 280, 28195–28202. [Google Scholar] [CrossRef]
- Venkatachalam, K.V.; Huang, W.; LaRocco, M.; Palzkill, T. Characterization of TEM-1 Beta-Lactamase Mutants from Positions 238 to 241 with Increased Catalytic Efficiency for Ceftazidime. J. Biol. Chem. 1994, 269, 23444–23450. [Google Scholar] [CrossRef]
- De Wals, P.-Y.; Doucet, N.; Pelletier, J.N. High Tolerance to Simultaneous Active-Site Mutations in TEM-1 β-Lactamase: Distinct Mutational Paths Provide More Generalized β-Lactam Recognition. Protein Sci. 2009, 18, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef]
- Robin, F.; Delmas, J.; Machado, E.; Bouchon, B.; Peixe, L.; Bonnet, R. Characterization of the Novel CMT Enzyme TEM-154. Antimicrob. Agents Chemother. 2011, 55, 1262–1265. [Google Scholar] [CrossRef]
- Marcoccia, F.; Leiros, H.-K.S.; Aschi, M.; Amicosante, G.; Perilli, M. Exploring the Role of L209 Residue in the Active Site of NDM-1 a Metallo-β-Lactamase. PLoS ONE 2018, 13, e0189686. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189686 (accessed on 1 July 2024). [CrossRef]
- Chiou, J.; Cheng, Q.; Shum, P.T.; Wong, M.H.; Chan, E.W.; Chen, S. Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity. Int. J. Mol. Sci. 2021, 22, 11480. [Google Scholar] [CrossRef]
- Mammeri, H.; Galleni, M.; Nordmann, P. Role of the Ser-287-Asn Replacement in the Hydrolysis Spectrum Extension of AmpC β-Lactamases in Escherichia coli. Antimicrob. Agents Chemother. 2009, 53, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Mazzariol, A.; Cornaglia, G.; Nikaido, H. Contributions of the AmpC β-Lactamase and the AcrAB Multidrug Efflux System in Intrinsic Resistance of Escherichia coli K-12 to β-Lactams. Antimicrob. Agents Chemother. 2000, 44, 1387–1390. [Google Scholar] [CrossRef]
- Lenfant, F.; Petit, A.; Labia, R.; Maveyraud, L.; Samama, J.-P.; Masson, J.-M. Site-Directed Mutagenesis of β-Lactamase TEM-1. Eur. J. Biochem. 1993, 217, 939–946. [Google Scholar] [CrossRef]
ApycGoe3 | ApycGoe3 (D178S) | ApycGrass | ApycGrass (D161S) | PNGM-1 a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrate | kcat | KM | kcat/KM | kcat | KM | kcat/KM | kcat | KM | kcat/KM | kcat | KM | kcat/KM | kcat | KM | kcat/KM |
Penicillins | |||||||||||||||
Penicillin G | 0.24 ± 4 × 10−2 | 230 ± 47 | 1.04 | 0.45 ± 5 × 10−2 | 751 ± 158 | 0.60 | 0.67 ± 6 × 10−2 | 231 ± 55 | 2.90 | 0.48 ± 3 × 10−2 | 180 ± 35 | 2.70 | 7.5 × 10−2 | 16 | 4.7 |
Ampicillin | 1.8 ± 0.1 | 663 ± 94 | 2.67 | 0.72 ± 7 × 10−2 | 526 ± 91 | 1.37 | 0.54 ± 7 × 10−2 | 418 ± 102 | 1.29 | 0.39 ± 5 × 10−2 | 891 ± 177 | 0.44 | 2.7 × 10−2 | 15 | 1.8 |
Carbenicillin | 0.32 ± 2 × 10−2 | 205 ± 39 | 1.56 | 0.13 ± 9 × 10−3 | 157 ± 29 | 0.83 | 0.15 ± 2 × 10−2 | 330 ± 82 | 0.45 | 0.24 ± 4 × 10−2 | 462 ± 148 | 0.52 | - | - | - |
Carbapenems | |||||||||||||||
Meropenem | 0.22 ± 2 × 10−2 | 215 ± 57 | 1.02 | 0.43 ± 4 × 10−2 | 160 ± 32 | 2.69 | 1.1 ± 9 × 10−2 | 98 ± 26 | 11.2 | 4.4 ± 0.7 | 287 ± 83 | 15.3 | 8.0 × 10−4 | 2 | 0.42 |
Imipenem | 0.27 ± 3 × 10−2 | 436 ± 33 | 0.62 | - | - | - | 3.1 ± 0.42 | 200 ± 54 | 15.5 | 4.2 ± 0.6 | 253 ± 56 | 16.6 | 1.1 × 10−3 | 2 | 0.55 |
Cephalosporins | |||||||||||||||
Cefuroxime | 8.6 × 10−3 ± 4 × 10−4 | 18 ± 3 | 0.48 | 8.3 × 10−3 ± 3 × 10−4 | 3.5 ± 0.5 | 2.37 | 5.3 × 10−3 ± 2 × 10−4 | 44 ± 9 | 0.12 | 6.0 × 10−3 ± 9 × 10−4 | 142 ± 43 | 0.042 | - | - | - |
Cephalothin | 3.0 × 10−3 ± 2 × 10−4 | 19 ± 6 | 0.16 | 7.0 × 10−3 ± 5 × 10−4 | 23 ± 4 | 0.30 | 5.6 × 10−3 ± 4 × 10−4 | 51 ± 11 | 0.11 | 1.3 × 10−3 ± 1 × 10−4 | 54 ± 18 | 0.024 | 0.13 | 62 | 2.1 |
Monobactams | |||||||||||||||
Aztreonam | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | N.H. | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, P.; Krco, S.; Davis, S.J.; Asser, L.; Brück, T.; Soo, R.M.; Bodén, M.; Hugenholtz, P.; Wilson, L.A.; Schenk, G.; et al. Phage Anti-Pycsar Proteins Efficiently Degrade β-Lactam Antibiotics. Appl. Biosci. 2024, 3, 438-449. https://doi.org/10.3390/applbiosci3040028
Joshi P, Krco S, Davis SJ, Asser L, Brück T, Soo RM, Bodén M, Hugenholtz P, Wilson LA, Schenk G, et al. Phage Anti-Pycsar Proteins Efficiently Degrade β-Lactam Antibiotics. Applied Biosciences. 2024; 3(4):438-449. https://doi.org/10.3390/applbiosci3040028
Chicago/Turabian StyleJoshi, Pallav, Stefan Krco, Samuel J. Davis, Lachlan Asser, Thomas Brück, Rochelle M. Soo, Mikael Bodén, Philip Hugenholtz, Liam A. Wilson, Gerhard Schenk, and et al. 2024. "Phage Anti-Pycsar Proteins Efficiently Degrade β-Lactam Antibiotics" Applied Biosciences 3, no. 4: 438-449. https://doi.org/10.3390/applbiosci3040028
APA StyleJoshi, P., Krco, S., Davis, S. J., Asser, L., Brück, T., Soo, R. M., Bodén, M., Hugenholtz, P., Wilson, L. A., Schenk, G., & Morris, M. T. (2024). Phage Anti-Pycsar Proteins Efficiently Degrade β-Lactam Antibiotics. Applied Biosciences, 3(4), 438-449. https://doi.org/10.3390/applbiosci3040028