Characterization of the Joint Microenvironment in Osteoarthritic Joints for In Vitro Strategies for MSC-Based Therapies: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- (a)
- Population: animal model for induction of articular osteoarthritis;
- (b)
- Intervention: treatment protocols applied directly to the lesion;
- (c)
- Results: description of the microenvironment of a damaged joint in the process of repair.
2.2. Selection Criteria
- (a)
- Experimental studies with induction of articular osteoarthritis in mice and rat models only;
- (b)
- Only studies in English;
- (c)
- Studies that addressed the description of the in vivo microenvironment/niche for the development of osteoarthritis;
- (d)
- Studies that had a negative control group.
- (a)
- Studies only in vitro;
- (b)
- Studies that addressed the microenvironment/niche only in in vitro evaluations;
- (c)
- Studies that addressed cartilage that was not of the hyaline type;
- (d)
- Studies that did not have a negative control group;
- (e)
- Studies using knock-out animals.
3. Results
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthr. Cartil. 2020, 28, 242–248. [Google Scholar] [CrossRef]
- Chahal, J.; Gómez-Aristizábal, A.; Shestopaloff, K.; Bhatt, S.; Chaboureau, A.; Fazio, A.; Chisholm, J.; Weston, A.; Chiovitti, J.; Keating, A.; et al. Bone Marrow Mesenchymal Stromal Cells in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Transl. Med. 2019, 8, 746–757. [Google Scholar] [CrossRef]
- Allen, K.D.; Thoma, L.M.; Golightly, Y.M. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 2022, 2, 184–195. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. Available online: https://pubmed.ncbi.nlm.nih.gov/31034380/ (accessed on 11 June 2023). [CrossRef]
- James, S.L.G.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Network GB of DC. Global Burden of Disease Study 2019 (GBD 2019) Results. Osteoarthritis—Level 3 Cause. 2020. Available online: https://ghdx.healthdata.org/gbd-2019 (accessed on 23 June 2024).
- Copp, G.; Robb, K.P.; Viswanathan, S. Culture-expanded mesenchymal stromal cell therapy: Does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol. Immunol. 2023, 20, 626–650. [Google Scholar] [CrossRef]
- Petrus-Reurer, S.; Romano, M.; Howlett, S.; Jones, J.L.; Lombardi, G.; Saeb-Parsy, K. Immunological considerations and challenges for regenerative cellular therapies. Commun. Biol. 2021, 4, 798. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8233383/ (accessed on 11 June 2023). [CrossRef]
- Robb, K.P.; Galipeau, J.; Shi, Y.; Schuster, M.; Martin, I.; Viswanathan, S. Failure to launch commercially-approved mesenchymal stromal cell therapies: What’s the path forward? Proceedings of the International Society for Cell & Gene Therapy (ISCT) Annual Meeting Roundtable held in May 2023, Palais des Congrès de Paris, Organized by the ISCT MSC Scientific Committee. Cytotherapy 2024, 26, 413–417. [Google Scholar]
- Hertel, F.C.; da Silva, A.S.; de Sabino, A.P.; Valente, F.L.; Reis, E.C.C. Preconditioning Methods to Improve Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Bone Regeneration—A Systematic Review. Biology 2022, 11, 733. Available online: https://pubmed.ncbi.nlm.nih.gov/35625461/ (accessed on 20 March 2023). [CrossRef]
- Liang, Y.; Xu, X.; Xu, L.; Iqbal, Z.; Ouyang, K.; Zhang, H.; Wen, C.; Duan, L.; Xia, J. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022, 12, 4866. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9274754/ (accessed on 20 March 2023). [CrossRef]
- Zhang, J.; Rong, Y.; Luo, C.; Cui, W. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging 2020, 12, 25138. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803581/ (accessed on 20 March 2023). [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. Available online: https://pubmed.ncbi.nlm.nih.gov/26434508/ (accessed on 24 March 2023). [CrossRef]
- Cosenza, S.; Ruiz, M.; Toupet, K.; Jorgensen, C.; Noël, D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 2017, 7, 16214. Available online: https://pubmed.ncbi.nlm.nih.gov/29176667/ (accessed on 14 October 2021). [CrossRef]
- D’arrigo, D.; Roffi, A.; Cucchiarini, M.; Moretti, M.; Candrian, C.; Filardo, G. Secretome and Extracellular Vesicles as New Biological Therapies for Knee Osteoarthritis: A Systematic Review. J. Clin. Med. 2019, 8, 1867. Available online: https://pubmed.ncbi.nlm.nih.gov/31689923/ (accessed on 24 March 2023). [CrossRef]
- Caplan, A.I. Why are MSCs therapeutic? New data: New insight. J. Pathol. 2009, 217, 318–324. Available online: https://pubmed.ncbi.nlm.nih.gov/19023885/ (accessed on 24 March 2023). [CrossRef]
- Yannarelli, G.; Dayan, V.; Pacienza, N.; Lee, C.J.; Medin, J.; Keating, A. Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant. 2013, 22, 1651–1666. Available online: https://pubmed.ncbi.nlm.nih.gov/23043977/ (accessed on 24 March 2023). [CrossRef]
- Gómez-Aristizábal, A.; Ng, C.; Ng, J.; Davies, J.E. Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transpl. 2012, 18, 1384–1394. Available online: https://pubmed.ncbi.nlm.nih.gov/22753359/ (accessed on 24 March 2023). [CrossRef]
- Sarugaser, R.; Hanoun, L.; Keating, A.; Stanford, W.L.; Davies, J.E. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE 2009, 4, e6498. Available online: https://pubmed.ncbi.nlm.nih.gov/19652709/ (accessed on 27 March 2023). [CrossRef]
- Zhang, B.; Tian, X.; Qu, Z.; Hao, J.; Zhang, W. Hypoxia-Preconditioned Extracellular Vesicles from Mesenchymal Stem Cells Improve Cartilage Repair in Osteoarthritis. Membranes 2022, 12, 225. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875566/ (accessed on 24 March 2023). [CrossRef]
- Gupta, S.; Rawat, S.; Krishnakumar, V.; Rao, E.P.; Mohanty, S. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell Tissue Res. 2022, 388, 535–548. Available online: https://pubmed.ncbi.nlm.nih.gov/35316374/ (accessed on 24 March 2023). [CrossRef]
- Duan, A.; Shen, K.; Li, B.; Li, C.; Zhou, H.; Kong, R.; Shao, Y.; Qin, J.; Yuan, T.; Ji, J.; et al. Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model. Stem Cell Res. Ther. 2021, 12, 427. Available online: https://pubmed.ncbi.nlm.nih.gov/34321073/ (accessed on 24 March 2023). [CrossRef]
- Jayasuriya, C.T.; Chen, Y.; Liu, W.; Chen, Q. The influence of tissue microenvironment on stem cell–based cartilage repair. Ann. N. Y. Acad. Sci. 2016, 1383, 21–33. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5599120/ (accessed on 5 April 2021). [CrossRef]
- Dai, M.; Sui, B.; Xue, Y.; Liu, X.; Sun, J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 2018, 180, 91–103. Available online: https://pubmed.ncbi.nlm.nih.gov/30031224/ (accessed on 18 March 2021). [CrossRef]
- Chen, Y.; Wu, T.; Huang, S.; Suen, C.-W.W.; Cheng, X.; Li, J.; Hou, H.; She, G.; Zhang, H.; Wang, H.; et al. Sustained Release SDF-1α/TGF-β1-Loaded Silk Fibroin-Porous Gelatin Scaffold Promotes Cartilage Repair. ACS Appl. Mater. Interfaces 2019, 11, 14608–14618. Available online: https://pubmed.ncbi.nlm.nih.gov/30938503/ (accessed on 18 March 2021). [CrossRef]
- Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med. 2019, 145, 146–160. Available online: https://pubmed.ncbi.nlm.nih.gov/31550528/ (accessed on 18 March 2021). [CrossRef]
- Cheng, W.; Gan, D.; Hu, Y.; Zheng, Z.; Zeng, Q.; Li, L.; Wang, X.; Zhang, Y.; Xu, Z.; Qin, L.; et al. The effect and mechanism of QufengZhitong capsule for the treatment of osteoarthritis in a rat model. J. Orthop. Translat. 2021, 28, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Meng, Y.; Wang, L.; Sun, J.; Ti, T.B.S.E.X.; Luo, L. T-614 attenuates knee osteoarthritis via regulating Wnt/β-catenin signaling pathway. J. Orthop. Surg. Res. 2021, 16, 403. [Google Scholar] [CrossRef] [PubMed]
- Fukui, T.; Yik, J.H.N.; Doyran, B.; Davis, J.; Haudenschild, A.K.; Adamopoulos, I.E.; Han, L.; Haudenschild, D.R. Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Osteoarthr. Cartil. 2021, 29, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Tian, G.; Yang, Z.; Gao, X.; Wang, F.; Li, J.; Tian, Z.; Huang, B.; Wei, F.; Sang, X.; et al. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact. Mater. 2021, 6, 2711–2728. [Google Scholar] [CrossRef]
- Liu, C.C.; Lee, H.C.; Peng, Y.S.; Tseng, A.H.; Wu, J.L.; Tsai, W.Y.; Wong, C.S.; Su, L.J. Transcriptome Analysis Reveals Novel Genes Associated with Cartilage Degeneration in Posttraumatic Osteoarthritis Progression. Cartilage 2021, 13, 1249S–1262S. [Google Scholar] [CrossRef] [PubMed]
- Mou, D.; Yu, Q.; Zhang, J.; Zhou, J.; Li, X.; Zhuang, W.; Yang, X. Intra-articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Eng. Regen. Med. 2021, 18, 113–125. Available online: https://pubmed.ncbi.nlm.nih.gov/33511556/ (accessed on 18 March 2021). [CrossRef]
- Qian, J.J.; Xu, Q.; Xu, W.M.; Cai, R.; Huang, G.C. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J. Orthop. Surg. Res. 2021, 16, 379. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, K.; Takahata, K.; Enomoto, S.; Oka, Y.; Ozone, K.; Morosawa, K.; Murata, K.; Kanemura, N.; Kokubun, T. Effect of Suppression of Rotational Joint Instability on Cartilage and Meniscus Degeneration in Mouse Osteoarthritis Model. Cartilage 2022, 13, 19476035211069239. [Google Scholar] [CrossRef] [PubMed]
- Forrester, L.A.; Fang, F.; Jacobsen, T.; Hu, Y.; Kurtaliaj, I.; Roye, B.D.; Edward Guo, X.; Chahine, N.O.; Thomopoulos, S. Transient neonatal shoulder paralysis causes early osteoarthritis in a mouse model. J. Orthop. Res. 2022, 40, 1981–1992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Y.; Wang, Z.; Wu, X.; Yang, C.; Yang, H. Hypoxia-inducible factor expression is related to apoptosis and cartilage degradation in temporomandibular joint osteoarthritis. BMC Musculoskelet Disord. 2022, 23, 583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Zhang, K.S.; Wang, J.F.; Wang, Y.C.; Zhang, H.; Tang, C.; Pei, Z.; Guan, Z.P. Corresponding Changes of Autophagy-Related Genes and Proteins in Different Stages of Knee Osteoarthritis: An Animal Model Study. Orthop. Surg. 2022, 14, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Fukui, D.; Nishiyama, D.; Yamanaka, M.; Tamai, H.; Nishio, N.; Kawakami, M.; Yamada, H. Development of a Novel Rat Knee Osteoarthritis Model Induced by Medial Meniscus Extrusion. Cartilage 2023. [Google Scholar] [CrossRef]
- Huang, F.; Su, Z.; Yang, J.; Zhao, X.; Xu, Y. Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J. Orthop. Surg. Res. 2023, 18, 670. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zou, G.; Cheng, Y.; Li, F.; Wu, H.; Shen, Y. MATN3 delivered by exosome from synovial mesenchymal stem cells relieves knee osteoarthritis: Evidence from in vitro and in vivo studies. J. Orthop. Translat. 2023, 41, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Valerio, M.S.; Pace, W.A.; Dolan, C.P.; Edwards, J.B.; Janakiram, N.B.; Potter, B.K.; Dearth, C.L.; Goldman, S.M. Development and characterization of an intra-articular fracture mediated model of post-traumatic osteoarthritis. J. Exp. Orthop. 2023, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, X.; Li, X.; Li, D.; Shan, Z.; Yao, C. Non-weight-bearing exercise attenuates papain-induced knee osteoarthritis in rats via the TLR4/MyD88/NF-κB signaling pathway. J. Orthop. Surg. Res. 2023, 18, 695. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Yan, G.; Wu, C. Eugenol protects chondrocytes and articular cartilage by downregulating the JAK3/STAT4 signaling pathway. J. Orthop. Res. 2023, 41, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.-J.; Lam, C.-F.; Lin, C.-C.; Chen, W.-L.; Li, C.-F.; Lin, Y.-T.; Yeh, M.-L. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthr. Cartil. 2013, 21, 1613–1622. Available online: https://pubmed.ncbi.nlm.nih.gov/23927932/ (accessed on 18 March 2021). [CrossRef]
- Wang, Y.; Sun, X.; Lv, J.; Zeng, L.; Wei, X.; Wei, L. Stromal Cell-Derived Factor-1 Accelerates Cartilage Defect Repairing by Recruiting Bone Marrow Mesenchymal Stem Cells and Promoting Chondrogenic Differentiation. Tissue Eng.-Part. A 2017, 23, 1160–1168. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037190/ (accessed on 18 March 2021). [CrossRef]
- Han, L.; Wang, M.; Li, P.; Gan, D.; Yan, L.; Xu, J.; Wang, K.; Fang, L.; Chan, C.W.; Zhang, H.; et al. Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine-Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 28015–28026. Available online: https://pubmed.ncbi.nlm.nih.gov/30052419/ (accessed on 18 March 2021). [CrossRef]
- Gan, D.; Xu, T.; Xing, W.; Wang, M.; Fang, J.; Wang, K.; Ge, X.; Chan, C.W.; Ren, F.; Tan, H.; et al. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J. Mater. Chem. B 2019, 7, 1716–1725. Available online: https://pubs.rsc.org/en/content/articlehtml/2019/tb/c8tb01664j (accessed on 18 March 2021). [CrossRef]
- Wakitani, S.; Goto, T.; Pineda, S.; Young, R.; Mansour, J.; I Caplan, A.; Goldberg, V. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Jt. Surg.-Ser. A 1994, 76, 579–592. Available online: https://pubmed.ncbi.nlm.nih.gov/8150826/ (accessed on 22 March 2021). [CrossRef]
- Pineda, S.; Pollack, A.; Stevenson, S.; Goldberg, V.; Caplan, A. A semiquantitative scale for histologic grading of articular cartilage repair. Cells Tissues Organs 1992, 143, 335–340. Available online: https://pubmed.ncbi.nlm.nih.gov/1502876/ (accessed on 22 March 2021). [CrossRef]
- Wayne, J.S.; McDowell, C.L.; Shields, K.J.; Tuan, R.S. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng. 2005, 11, 953–963. Available online: https://pubmed.ncbi.nlm.nih.gov/15998234/ (accessed on 22 March 2021). [CrossRef]
- O’Driscoll, S.W.; Marx, R.G.; Beaton, D.E.; Miura, Y.; Gallay, S.H.; Fitzsimmons, J.S. Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001, 7, 313–320. [Google Scholar] [CrossRef]
- Pritzker, K.P.H.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.-P.; Revell, P.A.; Salter, D.; van den Berg, W.B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. Available online: https://pubmed.ncbi.nlm.nih.gov/16242352/ (accessed on 22 March 2021). [CrossRef]
- Kikuchi, T.; Yamada, H.; Shimmei, M. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthr. Cartil. 1996, 4, 99–110. Available online: https://pubmed.ncbi.nlm.nih.gov/8806112/ (accessed on 22 March 2021). [CrossRef]
- Zhou, G.; Liu, W.; Cui, L.; Wang, X.; Liu, T.; Cao, Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006, 12, 3209–3221. Available online: https://pubmed.ncbi.nlm.nih.gov/17518635/ (accessed on 18 March 2021). [CrossRef]
- Little, C.; Smith, M. Animal Models of Osteoarthritis. Curr. Rheumatol. Rev. 2008, 4, 175–182. Available online: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-3971&volume=4&issue=3&spage=175 (accessed on 29 April 2021). [CrossRef]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016, 11, 1–27. Available online: https://josr-online.biomedcentral.com/articles/10.1186/s13018-016-0346-5 (accessed on 29 April 2021). [CrossRef]
- McCoy, A.M. Animal Models of Osteoarthritis: Comparisons and Key Considerations. Vet. Pathol. 2015, 52, 803–818. Available online: https://pubmed.ncbi.nlm.nih.gov/26063173/ (accessed on 29 April 2021). [CrossRef]
- Glasson, S.S.; Chambers, M.G.; Van Den Berg, W.B.; Little, C.B. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 2010, 18, S17–S23. [Google Scholar] [CrossRef]
- Parameswaran, N.; Patial, S. Tumor necrosis factor-a signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066460/ (accessed on 12 April 2021). [CrossRef]
- Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009, 27, 519–550. Available online: http://www.annualreviews.org/doi/10.1146/annurev.immunol.021908.132612 (accessed on 12 April 2021). [CrossRef]
- Chen, L.; Wang, S.; Wang, Y.; Zhang, W.; Ma, K.; Hu, C.; Zhu, H.; Liang, S.; Liu, M.; Xu, N. IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget 2018, 9, 17443–17454. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915127/ (accessed on 12 April 2021). [CrossRef]
- Nakai, K.; He, Y.Y.; Nishiyama, F.; Naruse, F.; Haba, R.; Kushida, Y.; Katsuki, N.; Moriue, T.; Yoneda, K.; Kubota, Y. IL-17A induces heterogeneous macrophages, and it does not alter the effects of lipopolysaccharides on macrophage activation in the skin of mice. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Wu, C.L.; Harasymowicz, N.S.; Klimak, M.A.; Collins, K.H.; Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr. Cartil. 2020, 28, 544–554. [Google Scholar] [CrossRef]
- Xie, J.; Huang, Z.; Yu, X.; Zhou, L.; Pei, F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev. 2019, 46, 36–44. [Google Scholar] [CrossRef]
- Gómez-Aristizábal, A.; Gandhi, R.; Mahomed, N.N.; Marshall, K.W.; Viswanathan, S. Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: A cohort study. Arthritis Res. Ther. 2019, 21, 26. Available online: https://pubmed.ncbi.nlm.nih.gov/30658702/ (accessed on 12 April 2021). [CrossRef]
- Benoit, M.; Desnues, B.; Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol. 2008, 181, 3733–3739. Available online: https://pubmed.ncbi.nlm.nih.gov/18768823/ (accessed on 21 October 2021). [CrossRef]
- Dymowska, M.; Aksamit, A.; Zielniok, K.; Kniotek, M.; Kaleta, B.; Roszczyk, A.; Zych, M.; Dabrowski, F.; Paczek, L.; Burdzinska, A. Interaction between Macrophages and Human Mesenchymal Stromal Cells Derived from Bone Marrow and Wharton’s Jelly—A Comparative Study. Pharmaceutics 2021, 13, 1822. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624657/ (accessed on 25 March 2023). [CrossRef]
- Caires, H.R.; Barros da Silva, P.; Barbosa, M.A.; Almeida, C.R. A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment. J. Tissue Eng. Regen. Med. 2018, 12, e1433–e1440. Available online: https://pubmed.ncbi.nlm.nih.gov/28865088/ (accessed on 25 March 2023). [CrossRef]
- Jackson, M.; Krasnodembskaya, A. Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC). Bio-Protocol 2017, 7, e2255. Available online: https://pubmed.ncbi.nlm.nih.gov/28534038/ (accessed on 25 March 2023). [CrossRef]
- Macrophages & Their Markers|Bio-Rad. Available online: https://www.bio-rad-antibodies.com/macrophage-m1-m2-tam-tcr-cd169-cd-markers-antibodies.html (accessed on 22 October 2021).
- Kyrylkova, K.; Kyryachenko, S.; Leid, M.; Kioussi, C. Detection of apoptosis by TUNEL assay. Methods Mol. Biol. 2012, 887, 41–47. Available online: https://pubmed.ncbi.nlm.nih.gov/22566045/ (accessed on 12 April 2021).
- Lefebvre, V.; Dvir-Ginzberg, M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect. Tissue Res. 2017, 58, 2–14. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287363/ (accessed on 7 April 2021). [CrossRef]
- Gomes, R.R.; Farach-Carson, M.C.; Carson, D.D. Perlecan Functions in Chondrogenesis: Insights from in vitro and in vivo Models. Cells Tissues Organs 2004, 176, 79–86. Available online: https://pubmed.ncbi.nlm.nih.gov/14745237/ (accessed on 7 April 2021). [CrossRef]
- Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia. Proc. Natl. Acad. Sci. USA 1991, 88, 7640–7644. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC52357/ (accessed on 7 April 2021). [CrossRef]
- Roughley, P.J.; Mort, J.S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 2014, 1, 1–11. Available online: http://www.jeo-esska.com/content/1/1/8 (accessed on 7 April 2021). [CrossRef]
- Watanabe, H.; Yamada, Y.; Kimata, K. Roles of Aggrecan, a Large Chondroitin Sulfate Proteoglycan, in Cartilage Structure and Function. J. Biochem. 1998, 124, 687–693. Available online: https://academic.oup.com/jb/article-lookup/doi/10.1093/oxfordjournals.jbchem.a022166 (accessed on 7 April 2021). [CrossRef]
- Thielen, N.G.M.; van der Kraan, P.M.; van Caam, A.P.M. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019, 8, 969. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769927/ (accessed on 9 April 2021). [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Ogawa, Y.; Schmidt, D.K.; Dasch, J.R.; Chang, R.J.; Glaser, C.B. Purification and characterization of transforming growth factor-beta 2.3 and-beta 1.2 heterodimers from bovine bone. J. Biol. Chem. 1992, 267, 2325–2328. Available online: https://www.sciencedirect.com/science/article/pii/S0021925818458814 (accessed on 9 April 2021). [CrossRef]
- Pombo-Suarez, M.; Castaño-Oreja, M.T.; Calaza, M.; Gomez-Reino, J.; Gonzalez, A. Differential upregulation of the three transforming growth factor beta isoforms in human osteoarthritic cartilage. Ann. Rheum. Dis. 2009, 68, 568–571. Available online: https://pubmed.ncbi.nlm.nih.gov/18467513/ (accessed on 9 April 2021). [CrossRef]
- Blaney Davidson, E.N.; Vitters, E.L.; van den Berg, W.B.; van der Kraan, P.M. TGF β-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res. Ther. 2006, 8, R65. Available online: http://arthritis-research.biomedcentral.com/articles/10.1186/ar1931 (accessed on 9 April 2021). [CrossRef]
- Takahashi, N.; Rieneck, K.; Van der Kraan, P.M.; Van Beuningen, H.M.; Vitters, E.L.; Bendtzen, K.; Van den Berg, W.B. Elucidation of IL-1/TGF-β interactions in mouse chondrocyte cell line by genome-wide gene expression1. Osteoarthr. Cartil. 2005, 13, 426–438. Available online: https://pubmed.ncbi.nlm.nih.gov/15882566/ (accessed on 9 April 2021). [CrossRef]
- Yang, X.; Chen, L.; Xu, X.; Li, C.; Huang, C.; Deng, C.X. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 2001, 153, 35–46. Available online: http://www.jcb.org/cgi/content/full/153/1/35 (accessed on 9 April 2021). [CrossRef]
- He, X.; Zhang, C.; Amirsaadat, S.; Jalil, A.T.; Kadhim, M.M.; Abasi, M.; Pilehvar, Y. Curcumin-Loaded Mesenchymal Stem Cell-Derived Exosomes Efficiently Attenuate Proliferation and Inflammatory Response in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Appl. Biochem. Biotechnol. 2023, 195, 51–67. Available online: https://pubmed.ncbi.nlm.nih.gov/35932371/ (accessed on 25 March 2023). [CrossRef]
- Xie, A.; Xue, J.; Wang, Y.; Yang, C.; Xu, M.; Jiang, Y. Kartogenin Induced Adipose-Derived Stem Cell Exosomes Enhance the Chondrogenic Differentiation Ability of Adipose-Derived Stem Cells. Dis. Markers 2022, 2022, 6943630. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444430/ (accessed on 25 March 2023). [CrossRef]
- Yoo, K.H.; Thapa, N.; Chwae, Y.J.; Yoon, S.H.; Kim, B.J.; Lee, J.O.; Jang, Y.N.; Kim, J. Transforming growth factor-β family and stem cell-derived exosome therapeutic treatment in osteoarthritis (Review). Int. J. Mol. Med. 2022, 49, 1–11. Available online: http://www.spandidos-publications.com/10.3892/ijmm.2022.5118/abstract (accessed on 25 March 2023). [CrossRef]
- Han, T.; Song, P.; Wu, Z.; Xiang, X.; Liu, Y.; Wang, Y.; Fang, H.; Niu, Y.; Shen, C. MSC secreted extracellular vesicles carrying TGF-beta upregulate Smad 6 expression and promote the regrowth of neurons in spinal cord injured rats. Stem Cell Rev. Rep. 2022, 18, 1078–1096. Available online: https://pubmed.ncbi.nlm.nih.gov/34449013/ (accessed on 25 March 2023). [CrossRef]
- Nakazaki, M.; Morita, T.; Lankford, K.L.; Askenase, P.W.; Kocsis, J.D. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell. Vesicles 2021, 10, e12137. Available online: https://pubmed.ncbi.nlm.nih.gov/34478241/ (accessed on 25 March 2023). [CrossRef]
- Hurley, M.; Dickson, K.; Hallett, R.; Grant, R.; Hauari, H.; Walsh, N.; Stansfield, C.; Oliver, S. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: A mixed methods review. Cochrane Database Syst. Rev. 2018, 2018, CD010842. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494515/ (accessed on 20 July 2023). [CrossRef]
Article Number | Authors and Model | Analysis | Time-Points (Weeks or as Described) | General Results |
---|---|---|---|---|
[24] | Dai et al. (2018) Rat Ligament rupture and partial bilateral medial meniscus excision | Gait observation. Toluidine blue staining histology for GAG labeling. Immunohistochemistry: MMP13, CD68, MR, and TUNEL. Synovial fluid ELISA: TGF-β1 and TGF-β3. | 6 | Control group still presented a painful gait, unlike treated groups. The articular cartilage surface exhibited structural damage, including discontinuities and fractures. Weak tagging for GAG. Strong tagging for MMP13, CD68, and TUNEL analysis. Weak tagging for MR. Significantly decreased levels of TGF-β1 and TGF-β3. |
[25] | Chen et al. (2019) Rat Bilateral osteochondral defect | Macroscopic evaluation. Histology: ICRS score [36]. Immunohistochemistry: collagen type II and MMP13. | 12 | Worst indices in the ICRS macroscopic score among the study groups. Worst indices in the ICRS histological score among the study groups. Weak type II collagen labeling on the defective joint surface and high MMP13 expression. |
[26] | Hu et al. (2019) Rat Ligament rupture and partial bilateral medial meniscus excision | Histology: OARSI score [38] with toluidine blue staining and safranin O fast green (GAG). Immunohistochemistry: TUNEL, type II collagen, aggrecan, MMP-13, CD68, and MR. Synovial fluid ELISA (TGF-β1 and TGF-β2). | 7 | Worst indices in the OARSI histological score among the study groups. Reduced GAG content. Low labeling of aggrecan, collagen type II, and MR High marking of MMP-13, CD68, and TUNEL. Low levels of TGF-β1 and TGF-β2. |
[27] | Cheng et al. (2021) Rat Medial collateral ligament and the medial meniscus transection | Pain. Histology (damage score). Micro-CT. RT-PCR (IL-1 b, IL-6, TNF-a). | 4 and 12 | Cartilage destruction, joint swelling, and bone erosion. Increased IL-6, TNF-a. |
[28] | Cong et al., (2021) Rat Papain-induced | Histology: Mankin scoring. TEM (transmission electron microscopy). Synovial fluid ELISA (MMP-13, IL-6, TNF-a). RT-qPCR and immunohistochemistry (β-catenin, MMP13, and GSK-3β). | Mankin score: worst in OA model. Chondocytes: enlarged vacuole-like structures. Collagen fibers loose and broken. High levels of MMP-13, IL-6, and TNF-a. High levels of β-catenin and MMP13, and low levels of GSK-3β. | |
[29] | Fukui et al. (2021) Mice Anterior cruciate ligament rupture | OARSI. qRT-PCR (IL-1b, IL-6). IVIS Spectrum imaging system (fluorescent for MMP activity). | 4 h 1, 3, and 7 day | Increased OARSI score. Increased IL-1b, IL-6: 4 h up to 1 day. Increased MMP activity: 3 and 76 days. Sinovite. |
[30] | Jiang et al. (2021) Rat Osteochondral defect | Immunohistochemistry: IL-1 and IL-10; TNF-α, CD206, and CD68; CD86, CD73, and CD105 | 10 days | Weak labeling for IL-10, CD206, and CD68. Strong tagging for CD86. There was no difference in the labeling of TNF-α, IL-1, CD73, and CD105 between groups. |
20 days | Weak labeling for IL-10, CD206, and CD68. Strong tagging for CD86. There was no difference in the labeling of TNF-α, IL-1, CD73, and CD105 between groups. | |||
ELISA: TNF-α, IL-1b, IL-6, IL-17. | 2 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | ||
12 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | |||
Histology: Kikuchi score with safranin O fast green (GAG) color. | 2 | Worst indices in Kikuchi histological score among study groups. Weak scoring for GAG. | ||
12 | Worst indices in Kikuchi histological score among study groups. Weak scoring for GAG. | |||
Immunohistochemistry: TNF-a, IL-1b, IL-6, IL-17. | 2 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | ||
12 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | |||
Behavior and pain analysis: WBI. | 2 | Low WBI value. | ||
12 | Low WBI value. | |||
[31] | Liu et al. (2021) Rat Anterior cruciate ligament transection with medial meniscectomy | Weight-bearing distribution of the hind limbs. Knee joint width. ELISA for inflammatory cytokines (IL-6, IL-1β, and TNF-α). | 12 | Decreased weight bearing. Higher knee joint width. Increased serum levels of IL-6, IL-1β, and TNF-α. |
[32] | Mou et al. (2021) Rat Intra-articular injection of monoiodoacetic acid | ELISA: TNF-α, IL-1b, IL-6, IL-17. | 2 | High expression of TNF-α, IL-1b, IL-6, and IL-17. |
12 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | |||
Histology: Kikuchi score [40] with safranin O fast green (GAG) color. | 2 | Worst indices in Kikuchi histological score among study groups. Weak scoring for GAG. | ||
12 | Worst indices in Kikuchi histological score among study groups. Weak scoring for GAG. | |||
Immunohistochemistry: TNF-a, IL-1b, IL-6, IL-17. | 2 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | ||
12 | High expression of TNF-α, IL-1b, IL-6, and IL-17. | |||
Behavior and pain analysis: WBI. | 2 | Low WBI value | ||
12 | Low WBI value | |||
[33] | Qian et al. (2021) Mouse Anterior cruciate ligament transection surgery | Histology: HE and safranin O. Mankin score. | 1 | Cartilage superficial destruction. Mankin score increased in comparison with sham control. |
2 | Cartilage destruction. Decreased safranin O staining. Increased Mankin score compared with previous week. | |||
4 | Cartilage destruction up to the calcified cartilage layer. Increased Mankin score compared with previous week. | |||
8 and 12 | Full-thickness cartilage defect. Increased Mankin score compared with previous weeks. | |||
[34] | Arakawa et al. (2022) Mice Destabilization of medial meniscus | OARSI score. Meniscus histology. Immunohistochemistry (TNF-a and MMP-13). | 8, 12 | OARSI score higher. Meniscus score higher. TNF-a and MMP-13 higher. |
[35] | Forrester et al. (2022) Mice Botulinum toxin injection (paralysis model) | Gait. MicroCT. Histology: MSAS. RT-PCR (Ihh, Acan, Runx2, Dkk1, Col2A1, Col10A1, BGLAP, ALPL, and BMP2). | 24 and 40 | Abnormal gait. Increased MSAS. Decreased expression Runx2, Dkk1, and BMP2. Increased expression Col10A1 and BGLAP. |
[36] | Zhang et al. (2022) a Rat Malloclusion stress | Histology: safranin O and HE. OARSI-modified Mankin score. Immunohistochemistry (ADAMTS5, MMP13, HIF2 alpha, apoptosis factor Caspase3). | 2 | Cartilage degeneration: irregular surfaces, superficial clusters, areas of loss of proteoglycan. Scores increased when compared with normal cartilage. |
4 | Cartilage degeneration: irregular surfaces, superficial clusters, areas of loss of proteoglycan. Scores increased when compared with previous time-point. Increased ADAMTS5, MMP13, HIF2 alpha, apoptosis factor Caspase3 | |||
8 | ||||
[37] | Zhang et al. (2022) b Rat Modified Hulth method (excision of anterior cruciate ligament + lateral meninscus) | Weight bearing. RT-qPCR (Autophagy genes: p62, Atg3, Atg7, Atg12). TEM. | 4 | Increased expression of p62, Atg3, Atg7, Atg12. |
10 | Increased expression of p62, Atg3, Atg7, Atg12, but lower than 4 weeks. | |||
[38] | Fukui et al. (2023) Rat Medial meniscus extrusion (MME) Medial meniscus transection (MMT) | Gait. OARSI. Histology. RT-PCR (IL-1β, TNFα, MMP-3, ADAMTS-5, MMP-13, and NGF). | 8 | Gait (2, 4, 6, and 8 weeks): decreased stand time, maximum contact area, intensity and swing speed in MME. Increased OARSI score (MME and MMT). Increased IL-1β, MMP-3, MMP-13, and NGF (MME and MMT). TNFα (MMT > MME, but not different from control). |
[39] | Huang et al. (2023) Rat Anterior cruciate ligament transection | Histology. qRT-PCR (NEAT1, miR-374b-5p, and PGAP1). | 4 | Narrow joint space, thin hyaline cartilage, increased thickness of calcifed cartilage, and macrophage hyperplasia was observed. Decreased expression of NEAT1 and PGAP1. Increased expression of miR-374b-5p. |
[40] | Long et al., (2023) Rat Destabilization of medial meniscus | OARSI. Histology: synovitis. RT-qPCR (Matn3, IL-17). Western blotting (IL-17, MMP-13, ADAMTS5, aggrecan, Col2A1, LC3I, LC3I, and Beclin 1). ELISA (IL-6 and TNF-a). | 4 | Increased synovitis and OARSI score. Increased IL-6, TNF-a, MMP-13, ADAMTS5, and IL-17. Decreased aggrecan, Col2A1, LC3I, LC3I, and Beclin 1. |
[41] | Valerio et al. (2023) Rat Intra-articular fracture mediated by 5 joule blunt impact | Histology. Micro-CT (BV/TV, Tb.N, Tb.Th, TB.Sp, BMD and morphology). Multiplex immunoassay (IL1A, IL17, CCL2, CCL3, CCL11, CCL7, CXCL1, COMP, NTX). Immunohistochemistry. | 2 and 8 | Increased synovitis and fibrosis. Micro-CT: qualitative differences in morphology. Increased IL1A, IL17, CCL2, COMP, NTX. |
[42] | Wang et al. (2023) Rat Papain-induced | Mankin score. ELISA (IL-1 b, IL-6, TNF-a) in serum. RT-qPCR and Western blotting (mRNA and proteins of the TLR4/MyD88/NF-kappa B signaling pathway). | 4 | Increased Mankin score. Increased IL-1 b, IL-6, TNF-a. Increased TLR4, ofMyD88 mRNA, NF-kB mRNA. |
[43] | Wu et al., (2023) Mice Anterior cruciate ligament transection | OARSI. Micro-CT. ELISA (COMP, CTX-II, PIINP). Immunohistochemistry (aggrecan, COLII, ADAMTS4, and MMP13). | 8 | OARSI score higher. Micro-CT: lower BMD, BV/TV, Tb.Th, Tb.N and higher Tb.Sp. Higher COMP, CTX-II, PIINP. Lower aggrecan, COLII. Higher ADAMTS4 and MMP13. |
Article Number | Authors | Increased Factors in OA | Decreased Factors in OA | Factors That Increased in Chondrogenesis |
---|---|---|---|---|
[24] | Dai et al. (2018) | MMP-13 CD68 TUNEL | GAG MR TGF-β1 TGF-β3 | GAG MR TGF-β1 TGF-β3 |
[25] | Chen et al. (2019) | MMP-13 | Type II collagen | Type II collagen |
[26] | Hu et al. (2019) | MMP-13 CD68 TUNEL | Aggrecan, Type II collagen MR TGF-β1 TGF-β2 | Aggrecan, Type II collagen MR |
[27] | Cheng et al. (2021) | IL-6, TNF-a | - | - |
[28] | Cong et al. (2021) | MMP-13 IL-6 TNF-α β-catenin | GSK-3β | GSK-3β |
[29] | Fukui et al. (2021) | IL-1b, IL-6, MMP | ||
[30] | Jian et al. (2021) | CD86 | GAG Type II collagen IL-10 CD206 CD68 | GAG Type II collagen IL-10 CD206 CD68 |
[31] | Liu et al. (2021) | PARP-1, iNOS COX-2 | - | - |
[32] | Mou et al. (2021) | TNF-α IL-1b IL-6 IL-17 | GAG | GAG |
[33] | Qian et al. (2021) | ADAMTS5 (1 o 4 weeks) COX-2 iNOS CD31-positive cells VEGF-A VEGFR2 (weeks 4 to 12) | ADAMTS5 (total cartilage destruction at 8 and 12 weeks) Type II collagen VEGFR2 (weeks 1 and 2) | - |
[34] | Arakawa et al. (2022) | TNF-α MMP-13 | - | - |
[35] | Forrester et al. (2022) | Col10A1 BGLAP | Runx2, Dkk1, and BMP2 | - |
[36] | Zhang et al. (2022) a | ADAMTS5 MMP13 HIF2 alpha Apoptosis factor Caspase3 | Aggrecan Type II collagen HIF1 alpha | |
[37] | Zhang et al. (2022) b | p62 Atg3 Atg7 Atg12 (autophagy genes) | - | - |
[38] | Fukui et al. (2023) | IL-1β MMP-3 MMP-13 NGF | - | - |
[39] | Huang et al. (2023) | miR-374b-5p | NEAT1 PGAP1 | - |
[40] | Long et al. (2023) | IL-6 TNF-a MMP-13 ADAMTS5 IL-17 | Aggrecan Col2A1 LC3I LC3I Beclin 1 | Aggrecan Col2A1 LC3I LC3I Beclin 1 |
[41] | Valerio et al. (2023) | IL1A IL17 CCL2 COMP NTX | - | - |
[42] | Wang et al. (2023) | IL-1 b IL-6 TNF-a TLR4 ofMyD88 NF-kB mRNA | TLR4, ofMyD88 NF-kB mRNA | |
[43] | Wu et al. (2023) | ADAMTS4 MMP13 | Aggregan COLII | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestrini da Silva, A.; Hertel, F.C.; Valente, F.L.; Voorwald, F.A.; Borges, A.P.B.; Sabino, A.d.P.; Sepulveda, R.V.; Reis, E.C.C. Characterization of the Joint Microenvironment in Osteoarthritic Joints for In Vitro Strategies for MSC-Based Therapies: A Systematic Review. Appl. Biosci. 2024, 3, 450-467. https://doi.org/10.3390/applbiosci3040029
Silvestrini da Silva A, Hertel FC, Valente FL, Voorwald FA, Borges APB, Sabino AdP, Sepulveda RV, Reis ECC. Characterization of the Joint Microenvironment in Osteoarthritic Joints for In Vitro Strategies for MSC-Based Therapies: A Systematic Review. Applied Biosciences. 2024; 3(4):450-467. https://doi.org/10.3390/applbiosci3040029
Chicago/Turabian StyleSilvestrini da Silva, Aline, Fernanda Campos Hertel, Fabrício Luciani Valente, Fabiana Azevedo Voorwald, Andrea Pacheco Batista Borges, Adriano de Paula Sabino, Rodrigo Viana Sepulveda, and Emily Correna Carlo Reis. 2024. "Characterization of the Joint Microenvironment in Osteoarthritic Joints for In Vitro Strategies for MSC-Based Therapies: A Systematic Review" Applied Biosciences 3, no. 4: 450-467. https://doi.org/10.3390/applbiosci3040029
APA StyleSilvestrini da Silva, A., Hertel, F. C., Valente, F. L., Voorwald, F. A., Borges, A. P. B., Sabino, A. d. P., Sepulveda, R. V., & Reis, E. C. C. (2024). Characterization of the Joint Microenvironment in Osteoarthritic Joints for In Vitro Strategies for MSC-Based Therapies: A Systematic Review. Applied Biosciences, 3(4), 450-467. https://doi.org/10.3390/applbiosci3040029