Into the Groove: A Multitechnique Insight into the DNA–Vemurafenib Interaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Preparation and Analytical Procedures
2.3. UV–Visible Absorption Spectroscopy
2.3.1. DNA Melting Study
2.3.2. Effect of the Ionic Strength
2.4. Viscosity Measurements
2.5. Circular Dichroism Spectroscopy
2.6. Steady-State Fluorescence Spectroscopy
2.7. Isothermal Titration Calorimetry Studies
2.8. Computer Simulations
3. Results and Discussion
3.1. UV–Visible Spectroscopy Assays
3.1.1. Absorption Spectra of the Interaction of Vemurafenib with ctDNA
3.1.2. DNA Melting Study
3.1.3. Effect of Ionic Strength
3.2. Viscosity Studies
3.3. CD Spectroscopy
3.4. Fluorescence Spectroscopy
3.5. Isothermal Titration Calorimetry
3.6. Molecular Dynamics Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watanabe, K.; Seki, N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int. J. Mol. Sci. 2024, 25, 752. [Google Scholar] [CrossRef] [PubMed]
- Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 2022, 21, 736–762. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.Y.; Ansari, M.F.; Tabassum, S.; Arjmand, F. A review on the recent advances of interaction studies of anticancer metal-based drugs with therapeutic targets, DNA and RNAs. Drug Discov. Today 2024, 29, 104055. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, Y.; Liang, C.; Lu, A.; Zhang, G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int. J. Mol. Sci. 2016, 17, 779. [Google Scholar] [CrossRef]
- Rescifina, A.; Zagni, C.; Varrica, M.G.; Pistarà, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. Eur. J. Med. Chem. 2014, 74, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Groelly, F.J.; Fawkes, M.; Dagg, R.A.; Blackford, A.N.; Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 2023, 23, 78–94. [Google Scholar] [CrossRef]
- Gu, L.; Hickey, R.J.; Malkas, L.H. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes 2023, 14, 1346. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Y.; Li, K.; Gao, J.; Huang, C.H.; Chen, C.C.; Ko, T.P.; Zhang, Y.; Guo, R.T.; Oldfield, E. Antibacterial drug leads: DNA and enzyme multitargeting. J. Med. Chem. 2015, 58, 1215–1227. [Google Scholar] [CrossRef]
- Butler, M.S.; Vollmer, W.; Goodall, E.C.A.; Capon, R.J.; Henderson, I.R.; Blaskovich, M.A.T. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect. Dis. 2024, 10, 3440–3474. [Google Scholar] [CrossRef] [PubMed]
- Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 2012, 11, 873–886. [Google Scholar] [CrossRef]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef] [PubMed]
- Vargiu, A.V.; Ruggerone, P.; Magistrato, A.; Carloni, P. Dissociation of minor groove binders from DNA: Insights from metadynamics simulations. Nucleic Acids Res. 2008, 36, 5910–5921. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Murillo, R.; Robertson, J.C.; Zgarbová, M.; Šponer, J.; Otyepka, M.; Jurečka, P.; Cheatham, T.E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. [Google Scholar] [CrossRef] [PubMed]
- Russi, M.; Cavalieri, G.; Marson, D.; Laurini, E.; Pricl, S. Binding of the B-Raf Inhibitors Dabrafenib and Vemurafenib to Human Serum Albumin: A Biophysical and Molecular Simulation Study. Mol. Pharm. 2022, 19, 1619–1634. [Google Scholar] [CrossRef]
- Junmei, W.; Romain, M.W.; James, W.C.; Peter, A.K.; David, A.C. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.-Y. R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011, 39, W511–W517. [Google Scholar] [CrossRef]
- Invernizzi, M.; Parrinello, M. Rethinking Metadynamics: From Bias Potentials to Probability Distributions. J. Phys. Chem. Lett. 2020, 11, 2731–2736. [Google Scholar] [CrossRef]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Gomez, Y.K.; Natale, A.M.; Lincoff, J.; Wolgemuth, C.W.; Rosenberg, J.M.; Grabe, M. Taking the Monte-Carlo gamble: How not to buckle under the pressure! J. Comput. Chem. 2022, 43, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Hopkins, C.W.; Le Grand, S.; Walker, R.C.; Roitberg, A.E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. [Google Scholar] [CrossRef]
- Toukmaji, A.; Sagui, C.; Board, J.; Darden, T. Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J. Chem. Phys. 2000, 113, 10913–10927. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. AMBER 2022; University of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Takahashi, H.; Nishikawa, S. Spectroscopic Studies of Nucleic Acids. In Nucleic Acids in Chemistry and Biology; Blackburn, G.M., Gait, M.J., Loakes, D., Williams, D.M., Eds.; Royal Society of Chemistry: London, UK, 2015; pp. 301–338. [Google Scholar]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B 2013, 124, 1–19. [Google Scholar] [CrossRef]
- Wartell, R.M.; Benight, A.S. Thermal denaturation of DNA molecules: A comparison of theory with experiment. Phys. Rep. 1985, 126, 67–107. [Google Scholar] [CrossRef]
- Tataurov, A.V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 2008, 133, 66–70. [Google Scholar] [CrossRef]
- Lando, D.Y.; Fridman, A.S.; Chang, C.-L.; Grigoryan, I.E.; Galyuk, E.N.; Murashko, O.N.; Chen, C.-C.; Hu, C.-K. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves. Anal. Biochem. 2015, 479, 28–36. [Google Scholar] [CrossRef]
- Khandelwal, G.; Bhyravabhotla, J. A phenomenological model for predicting melting temperatures of DNA sequences. PLoS ONE 2010, 5, e12433. [Google Scholar] [CrossRef]
- Almaqwashi, A.A.; Paramanathan, T.; Rouzina, I.; Williams, M.C. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Res. 2016, 44, 3971–3988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Brantley, S.L.; Corcelli, S.A.; Tokmakoff, A. DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site. Commun. Biol. 2020, 3, 525. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Chen, X.; Niu, B.; Chen, Q. The Interaction Mode of Groove Binding between Quercetin and Calf Thymus DNA Based on Spectrometry and Simulation. Chem. Biodivers. 2017, 14, e1700133. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Lv, M.; Du, H.; Zhao, D.; Lu, K. Spectroscopic studies on noncovalent binding of nicotinamide–modified BRCA1 (856–871) analogs to calf thymus DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122531. [Google Scholar] [CrossRef] [PubMed]
- Amado, A.M.; Pazin, W.M.; Ito, A.S.; Kuzmin, V.A.; Borissevitch, I.E. Acridine orange interaction with DNA: Effect of ionic strength. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 900–909. [Google Scholar] [CrossRef]
- Shi, J.-H.; Chen, J.; Wang, J.; Zhu, Y.-Y. Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 443–450. [Google Scholar] [CrossRef]
- Phadte, A.A.; Banerjee, S.; Mate, N.A.; Banerjee, A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem. Biophys. Rep. 2019, 18, 100629. [Google Scholar] [CrossRef]
- Bi, S.; Qiao, C.; Song, D.; Tian, Y.; Gao, D.; Sun, Y.; Zhang, H. Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sens. Actuators B Chem. 2006, 119, 199–208. [Google Scholar] [CrossRef]
- Chang, Y.M.; Chen, C.K.; Hou, M.H. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int. J. Mol. Sci. 2012, 13, 3394–3413. [Google Scholar] [CrossRef]
- Miyahara, T.; Nakatsuji, H.; Sugiyama, H. Helical Structure and Circular Dichroism Spectra of DNA: A Theoretical Study. J. Phys. Chem. A 2013, 117, 42–55. [Google Scholar] [CrossRef]
- Luikham, S.; Mavani, A.; Sinha, D.; Bhattacharyya, J. Structural Insight into Groove Binding of Yohimbine with Calf Thymus DNA: A Spectroscopic, Calorimetric, and Computational Approach. J. Phys. Chem. B 2023, 127, 4966–4978. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.A.; Ishqi, H.M.; Rehman, S.U.; Sarwar, T.; Afrin, S.; Rahman, Y.; Tabish, M. Elucidating the interaction of sulindac with calf thymus DNA: Biophysical and in silico molecular modelling approach. New J. Chem. 2017, 41, 14924–14935. [Google Scholar] [CrossRef]
- Saboury, A.A. A review on the ligand binding studies by isothermal titration calorimetry. J. Iran. Chem. Soc. 2006, 3, 1–21. [Google Scholar] [CrossRef]
- Su, H.; Xu, Y. Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands with Proteins in Drug Design. Front. Pharmacol. 2018, 9, 1133. [Google Scholar] [CrossRef]
- Laurini, E.; Aulic, S.; Skoko, N.; Marson, D.; Fermeglia, M.; Pricl, S. ITC for Characterization of Self-Assembly Process of Cationic Dendrons for siRNA Delivery. Methods Mol. Biol. 2021, 2282, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Dhal, A.; Nayim, S.; Pattanayek, S.; Khatun, M.; Barman, S.; Paria, S.; Shit, B.; Kundu, S.; Jha, P.K.; Hossain, M. Evaluation of calf thymus DNA binding of newly synthesize five 9 O Imidazolyl alkyl berberine derivative: A comparative multi-spectroscopic and calorimetric study. Int. J. Biol. Macromol. 2023, 253, 126958. [Google Scholar] [CrossRef]
- Chaires, J.B. Energetics of drug-DNA interactions. Biopolymers 1997, 44, 201–215. [Google Scholar] [CrossRef]
- Bhadra, K.; Kumar, G.S. Isoquinoline alkaloids and their binding with DNA: Calorimetry and thermal analysis applications. Mini Rev. Med. Chem. 2010, 10, 1235–1247. [Google Scholar] [CrossRef]
- Basu, A.; Suresh Kumar, G. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid. J. Biomol. Struct. Dyn. 2015, 34, 935–942. [Google Scholar] [CrossRef]
- Das, A.; Suresh Kumar, G.; Dutta, S. Interaction of aloe active compounds with calf thymus DNA. J. Mol. Recognit. 2019, 32, e2786. [Google Scholar] [CrossRef]
T (°C) | Kd (μM) | n (−) | DH (kcal/mol) | −TDS (kcal/mol) | DG (kcal/mol) | DCp (cal/mol °C) |
---|---|---|---|---|---|---|
25 | 11.2 | 0.239 | −3.49 | −3.27 | −6.76 | −172 |
30 | 11.8 | 0.258 | −4.08 | −2.76 | −6.84 | |
37 | 10.7 | 0.241 | −5.32 | −1.74 | −7.06 | |
40 | 10.3 | 0.223 | −6.08 | −1.07 | −7.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalieri, G.; Pison, R.; Marson, D.; Laurini, E.; Pricl, S. Into the Groove: A Multitechnique Insight into the DNA–Vemurafenib Interaction. Appl. Biosci. 2024, 3, 468-483. https://doi.org/10.3390/applbiosci3040030
Cavalieri G, Pison R, Marson D, Laurini E, Pricl S. Into the Groove: A Multitechnique Insight into the DNA–Vemurafenib Interaction. Applied Biosciences. 2024; 3(4):468-483. https://doi.org/10.3390/applbiosci3040030
Chicago/Turabian StyleCavalieri, Gabriele, Riccardo Pison, Domenico Marson, Erik Laurini, and Sabrina Pricl. 2024. "Into the Groove: A Multitechnique Insight into the DNA–Vemurafenib Interaction" Applied Biosciences 3, no. 4: 468-483. https://doi.org/10.3390/applbiosci3040030
APA StyleCavalieri, G., Pison, R., Marson, D., Laurini, E., & Pricl, S. (2024). Into the Groove: A Multitechnique Insight into the DNA–Vemurafenib Interaction. Applied Biosciences, 3(4), 468-483. https://doi.org/10.3390/applbiosci3040030