Effect of Integrated Crop–Livestock Systems on Soil Properties and Microbial Diversity in Soybean Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Crop Husbandry
2.2. Soil Sampling and Processing
2.3. Soil Physicochemical and Biological Assay
2.4. DNA Extraction and Amplicon Sequencing
2.5. Bioinformatics and Statistical Analysis
3. Results
3.1. Soil Characterization
3.2. Effect of ICLS on Microbial Community Composition
3.2.1. Bacterial Distribution
3.2.2. Fungal Distribution
3.3. Effect of ICLS on Microbial ALPHA Diversity
3.3.1. Bacterial ALPHA Diversity
3.3.2. Fungal ALPHA Diversity
3.4. Effect of Cover Crops and Grazing on Microbial Beta Diversity
3.4.1. Bacterial Beta Diversity
3.4.2. Fungal Beta Diversity
3.5. Correlation of Cover Crops and Grazing on Beneficial Microbial Phyla
3.5.1. Bacterial Correlation Analysis
3.5.2. Fungal Correlation Analysis
3.6. Effect of Biophysiochemical Properties on Microbial Communities
3.6.1. Bacterial Communities
3.6.2. Fungal Communities
4. Discussion
4.1. Effect of ICLS on Different Soil Biophysiochemical Properties
4.2. Improved Fungal Richness Due to Cover Crop Treatments
4.3. Differentiation of Different Bacterial and Fungal Phyla Due to ICLS
4.4. Microbial Diversity Differentiation Due to Waterstable Aggregates, TotalC, Total N, and Electrical Conductivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and Human Security in the 21st Century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land Changes and Their Driving Forces in the Southeastern United States. Reg. Environ. Change 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Borges, W.L.B.; Sarto, J.R.W.; Pires, C.A.B.; Rice, C.W.; Rosolem, C.A. Soil Microbial Community and Activity in a Tropical Integrated Crop-Livestock System. Appl. Soil Ecol. 2020, 145, 103350. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States. Soil Sci. Soc. Am. J. 2010, 74, 347–357. [Google Scholar] [CrossRef]
- Schmidt, R.; Gravuer, K.; Bossange, A.V.; Mitchell, J.; Scow, K. Long-Term Use of Cover Crops and No-till Shift Soil Microbial Community Life Strategies in Agricultural Soil. 2018, 13, e0192953. [CrossRef]
- Vida, C.; de Vicente, A.; Cazorla, F.M. The Role of Organic Amendments to Soil for Crop Protection: Induction of Suppression of Soilborne Pathogens. Ann. Appl. Biol. 2020, 176, 1–15. [Google Scholar] [CrossRef]
- Norris, C.E.; Congreves, K.A. Alternative Management Practices Improve Soil Health Indices in Intensive Vegetable Cropping Systems: A Review. Front. Environ. Sci. 2018, 6, 50. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; Bueno de Mesquita, C.P. How Microbes Can, and Cannot, Be Used to Assess Soil Health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Jing, L.; Mipam, T.D.; Ai, Y.; Jiang, A.; Gan, T.; Zhang, S.; Liu, J.; Tian, L. Grazing intensity alters soil microbial diversity and network complexity in alpine meadow on the Qinghai-Tibet Plateau. Agric. Ecosyst. Environ. 2023, 353, 108541. [Google Scholar] [CrossRef]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil Biodiversity for Agricultural Sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Bach, E.M.; Ramirez, K.S.; Fraser, T.D.; Wall, D.H. Soil Biodiversity Integrates Solutions for a Sustainable Future. Sustainability 2020, 12, 2662. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover Crops to Increase Soil Microbial Diversity and Mitigate Decline in Perennial Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Peyraud, J.-L.; Taboada, M.; Delaby, L. Integrated crop and livestock systems in Western Europe and South America: A review. Eur. J. Agron. 2014, 57, 31–42. [Google Scholar] [CrossRef]
- Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; de Faccio Carvalho, P.C.; Cortner, O.; et al. Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty. Agric. Syst. 2017, 155, 136–146. [Google Scholar] [CrossRef]
- Kardol, P.; Dickie, I.A.; John, M.G.S.; Husheer, S.W.; Bonner, K.I.; Bellingham, P.J.; Wardle, D.A. Soil-Mediated Effects of Invasive Ungulates on Native Tree Seedlings. J. Ecol. 2014, 102, 622–631. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Xun, W.; Yan, R.; Ren, Y.; Jin, D.; Xiong, W.; Zhang, G.; Cui, Z.; Xin, X.; Zhang, R. Grazing-Induced Microbiome Alterations Drive Soil Organic Carbon Turnover and Productivity in Meadow Steppe. Microbiome 2018, 6, 170. [Google Scholar] [CrossRef]
- Cicek, H.; Thiessen Martens, J.R.; Bamford, K.C.; Entz, M.H. Effects of Grazing Two Green Manure Crop Types in Organic Farming Systems: N Supply and Productivity of Following Grain Crops. Agric. Ecosyst. Environ. 2014, 190, 27–36. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Forcella, F. Cover Crop and Soil Quality Interactions in Agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229. [Google Scholar]
- Didon, U.M.E.; Kolseth, A.-K.; Widmark, D.; Persson, P. Cover Crop Residues—Effects on Germination and Early Growth of Annual Weeds. Weed Sci. 2014, 62, 294–302. [Google Scholar] [CrossRef]
- Marais, A.; Labuschagne, J.; Booyse, M. Influence of Oats Cover Crop Preceding Dryland Lucerne Establishment on Some Aspects of Soil Microbial Ecology. S. Afr. J. Plant Soil 2020, 37, 87–89. [Google Scholar] [CrossRef]
- Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Babin, D.; Deubel, A.; Jacquiod, S.; Sørensen, S.J.; Geistlinger, J.; Grosch, R.; Smalla, K. Impact of Long-Term Agricultural Management Practices on Soil Prokaryotic Communities. Soil Biol. Biochem. 2019, 129, 17–28. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil Microbial Biomass, Functional Microbial Diversity, and Nematode Community Structure as Affected by Cover Crops and Compost in an Organic Vegetable Production System. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef]
- Chen, X.; Henriksen, T.M.; Svensson, K.; Korsaeth, A. Long-Term Effects of Agricultural Production Systems on Structure and Function of the Soil Microbial Community. Appl. Soil Ecol. 2020, 147, 103387. [Google Scholar] [CrossRef]
- Powell, J.M.; Ikpe, F.N.; Somda, Z.C.; Fernández-Rivera, S. Urine effects on soil chemical properties and the impact of urine and dung on pearl millet yield. Exp. Agric. 1998, 34, 259–276. [Google Scholar] [CrossRef]
- Rumeau, M.; Pistocchi, C.; Ait-Mouheb, N.; Marsden, C.; Brunel, B. Unveiling the impact of human urine fertilization on soil bacterial communities: A path toward sustainable fertilization. Appl. Soil Ecol. 2024, 201, 105471. [Google Scholar] [CrossRef]
- Wardle, D.A. The Influence of Biotic Interactions on Soil Biodiversity. Ecol. Lett. 2006, 9, 870–886. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, D.J.; Delgado-Baquerizo, M.; Travers, S.K.; Val, J.; Oliver, I.; Hamonts, K.; Singh, B.K. Competition Drives the Response of Soil Microbial Diversity to Increased Grazing by Vertebrate Herbivores. Ecology 2017, 98, 1922–1931. [Google Scholar] [CrossRef]
- Stevens, B.M.; Sonderegger, D.L.; Johnson, N.C. Microbial Community Structure across Grazing Treatments and Environmental Gradients in the Serengeti. Soil Ecol. Lett. 2022, 4, 45–56. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Smith, K.L. Soil Microbial Diversity and the Sustainability of Agricultural Soils. Plant Soil 1995, 170, 75–86. [Google Scholar] [CrossRef]
- Sulc, R.M.; Tracy, B.F. Integrated Crop–Livestock Systems in the U.S. Corn Belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef]
- Rushing, J.B.; Bass, B.S.; Lemus, R.W.; Maples, J.G.; Lyles, J.C. The effects of grazing cover crops on animal performance and soybean production. Crop Forage Turfgrass Manag. 2023, 9, e20203. [Google Scholar] [CrossRef]
- Biermacher, J.T.; Reuter, R.; Kering, M.K.; Rogers, J.K.; Blanton, J.; Guretzky, J.A.; Butler, T.J. Expected Economic Potential of Substituting Legumes for Nitrogen in Bermudagrass Pastures. Crop Sci. 2012, 52, 1923–1930. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 425–442. [Google Scholar] [CrossRef]
- Mclean, E.O. Soil PH and Lime Requirement; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 199–224. [Google Scholar] [CrossRef]
- Reyna, D.L.; Wall, L.G. Revision of Two Colorimetric Methods to Quantify Glomalin-Related Compounds in Soils Subjected to Different Managements. Biol. Fertil. Soils 2014, 50, 395–400. [Google Scholar] [CrossRef]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Methods Mol. Biol. 1994, 32, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Abellan-Schneyder, I.; Matchado, M.S.; Reitmeier, S.; Sommer, A.; Sewald, Z.; Baumbach, J.; List, M.; Neuhaus, K. Primer, Pipelines, Parameters: Issues in 16S RRNA Gene Sequencing. mSphere 2021, 6, 10-1128. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e0013102. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Casimiro, S.; Moura, M.; Zé-Zé, L.; Tenreiro, R.; Monteiro, A.A. Internal Transcribed Spacer 2 Amplicon as a Molecular Marker for Identification of Peronospora Parasitica (Crucifer Downy Mildew). J. Appl. Microbiol. 2004, 96, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Kleiner, M.; Sharp, C.E.; Thorson, E.; Li, C.; Liu, D.; Strous, M. Fast and Simple Analysis of MiSeq Amplicon Sequencing Data with MetaAmp. Front. Microbiol. 2017, 8, 1461. [Google Scholar] [CrossRef] [PubMed]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New Primers to Amplify the Fungal ITS2 Region—Evaluation by 454-Sequencing of Artificial and Natural Communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Hall, M.; Beiko, R.G. 16S RRNA Gene Analysis with QIIME2. Methods Mol. Biol. 2018, 1849, 113–129. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.C. Introduction to Ordination Techniques. In Developments in Numerical Ecology; Springer: Berlin/Heidelberg, Germany, 1987; pp. 3–64. [Google Scholar] [CrossRef]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for Comprehensive Statistical, Functional, and Meta-Analysis of Microbiome Data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Stewart, R.D. A Database for Global Soil Health Assessment. Sci. Data 2020, 7, 16. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. A Survey of Soils for Aggregate Stability and Glomalin, a Glycoprotein Produced by Hyphae of Arbuscular Mycorrhizal Fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Wilpiszeski, R.L.; Aufrecht, J.A.; Retterer, S.T.; Sullivan, M.B.; Graham, D.E.; Pierce, E.M.; Zablocki, O.D.; Palumbo, A.V.; Elias, D.A. Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. Appl. Environ. Microbiol. 2019, 85, e00324-19. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Zhang, H.; Zhang, Y. Grazing and Mowing Affect the Carbon-to-Nitrogen Ratio of Plants by Changing the Soil Available Nitrogen Content and Soil Moisture on the Meadow Steppe, China. Plants 2022, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- White, C.M.; DuPont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; LaChance, J.C.; Kaye, J.P. Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosyst. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef]
- Shanmugam, S.G.; Kingery, W.L. Changes in Soil Microbial Community Structure in Relation to Plant Succession and Soil Properties during 4000 Years of Pedogenesis. Eur. J. Soil Biol. 2018, 88, 80–88. [Google Scholar] [CrossRef]
- Kodadinne Narayana, N.; Kingery, W.L.; Shankle, M.W.; Ganapathi Shanmugam, S. Differential Response of Soil Microbial Diversity and Community Composition Influenced by Cover Crops and Fertilizer Treatments in a Dryland Soybean Production System. Agronomy 2022, 12, 618. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A Tribute to Claude-Shannon (1916–2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the “Shannon-Wiener” Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Wang, C.H.; Wu, L.; Wang, Z.; Alabady, M.S.; Parson, D.; Molumo, Z.; Fankhauser, S.C. Characterizing Changes in Soil Microbiome Abundance and Diversity Due to Different Cover Crop Techniques. PLoS ONE 2020, 15, e0232453. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, F.; Wang, K.; Yue, H.; Lan, X. Responses of Bacterial PhoD Gene Abundance and Diversity to Crop Rotation and Feedbacks to Phosphorus Uptake in Wheat. Appl. Soil Ecol. 2020, 154, 103604. [Google Scholar] [CrossRef]
- Gao, H.; Tian, G.; Khashi u Rahman, M.; Wu, F. Cover Crop Species Composition Alters the Soil Bacterial Community in a Continuous Pepper Cropping System. Front. Microbiol. 2022, 12, 3882. [Google Scholar] [CrossRef]
- Boukhatem, Z.F.; Merabet, C.; Tsaki, H. Plant Growth Promoting Actinobacteria, the Most Promising Candidates as Bioinoculants? Front. Agron. 2022, 4, 14. [Google Scholar] [CrossRef]
- Sathya, A.; Vijayabharathi, R.; Gopalakrishnan, S. Plant Growth-Promoting Actinobacteria: A New Strategy for Enhancing Sustainable Production and Protection of Grain Legumes. 3 Biotech 2017, 7, 102. [Google Scholar] [CrossRef]
- Alvarez, A.; Maria Saez, J.; Sebastian Davila Costa, J.; Leticia Colin, V.; Soledad Fuentes, M.; Antonio Cuozzo, S.; Susana Benimeli, C.; Alejandra Polti, M.; Julia Amoroso, M. Actinobacteria: Current Research and Perspectives for Bioremediation of Pesticides and Heavy Metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Wen, H.; Zhou, T.; Zhang, T.; Gao, X. 454 Pyrosequencing Analysis of Bacterial Diversity Revealed by a Comparative Study of Soils from Mining Subsidence and Reclamation Areas. J. Microbiol. Biotechnol 2014, 24, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Weidler, G.W.; Gerbl, F.W.; Stan-Lotter, H. Crenarchaeota and Their Role in the Nitrogen Cycle in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps. Appl. Environ. Microbiol. 2008, 74, 5934–5942. [Google Scholar] [CrossRef]
- Freeman, K.R.; Martin, A.P.; Karki, D.; Lynch, R.C.; Mitter, M.S.; Meyera, A.F.; Longcore, J.E.; Simmons, D.R.; Schmidt, S.K. Evidence That Chytrids Dominate Fungal Communities in High-Elevation Soils. Proc. Natl. Acad. Sci. USA 2009, 106, 18315–18320. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Hill, T.C.J.; Pummer, B.G.; Yordanova, P.; Franc, G.D.; Pöschl, U. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella Alpina. Biogeosciences 2015, 12, 1057–1071. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Kemmelmeier, K. The Glomeromycota in the Neotropics. Front. Microbiol. 2021, 11, 3200. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global Diversity and Geography of Soil Fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Hodge, A.; Fitter, A.H. Substantial Nitrogen Acquisition by Arbuscular Mycorrhizal Fungi from Organic Material Has Implications for N Cycling. Proc. Natl. Acad. Sci. USA 2010, 107, 13754–13759. [Google Scholar] [CrossRef]
- Cline, L.C.; Huggins, J.A.; Hobbie, S.E.; Kennedy, P.G. Organic Nitrogen Addition Suppresses Fungal Richness and Alters Community Composition in Temperate Forest Soils. Soil Biol. Biochem. 2018, 125, 222–230. [Google Scholar] [CrossRef]
- He, J.D.; Chi, G.G.; Zou, Y.N.; Shu, B.; Wu, Q.S.; Srivastava, A.K.; Kuča, K. Contribution of Glomalin-Related Soil Proteins to Soil Organic Carbon in Trifoliate Orange. Appl. Soil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Chahal, I.; Vyn, R.J.; Mayers, D.; van Eerd, L.L. Cumulative Impact of Cover Crops on Soil Carbon Sequestration and Profitability in a Temperate Humid Climate. Sci. Rep. 2020, 10, 13381. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of Cover Crops on the Soil Microbiome of Tree Crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Jagadamma, S.; Walker, F.R.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A. Effect of Multispecies Cover Crop Mixture on Soil Properties and Crop Yield. Agric. Environ. Lett. 2017, 2, 170030. [Google Scholar] [CrossRef]
- Reid, R.P.; Oehlert, A.M.; Suosaari, E.P.; Demergasso, C.; Chong, G.; Escudero, L.V.; Piggot, A.M.; Lascu, I.; Palma, A.T. Electrical Conductivity as a Driver of Biological and Geological Spatial Heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile. Sci. Rep. 2021, 11, 12769. [Google Scholar] [CrossRef] [PubMed]
- di Lonardo, D.P.; van der Wal, A.; Harkes, P.; de Boer, W. Effect of Nitrogen on Fungal Growth Efficiency. Plant Biosyst. 2020, 154, 433–437. [Google Scholar] [CrossRef]
Cover Crop Treatment | Species | Cultivars | Seeding Rate (lb ac−1) |
---|---|---|---|
Oats (O) | Avena staiva L. | Bob | 80 |
Oats + | Avena staiva L. | Bob | 80 |
Crimson clover (OC) | Triticum incarnatum L. | AU Sunrise | 10 |
Oats + | Avena staiva L. | Bob | 80 |
Crimson clover + | Triticum incarnatum L. | AU Sunrise | 10 |
Tillage Radish (OCR) | Raphanus sativus L. | Daikon | 5 |
CC | pH | EC (µS cm−1) | Total C (%) | Total N (%) | C:N (%) | WSA (%) | EE-GRSP (mg g−1) |
---|---|---|---|---|---|---|---|
2020 | |||||||
O | 6.28 ± 0.15 a | 169.07 ± 17.00 a | 2.63 ± 0.23 a | 0.28 ± 0.03 a | 10.72 ± 0.21 b | 77.37 ± 5.98 a | 2.02 ± 0.16 a |
OC | 6.43 ± 0.17 a | 240.80 ± 19.29 a | 3.06 ± 0.27 a | 0.26 ± 0.02 a | 11.66 ± 0.13 a,* | 75.80 ± 3.90 a | 2.06 ± 0.18 a |
OCR | 6.28 ± 0.13 a | 238.63 ± 31.14 a | 3.34 ± 0.19 a | 0.28 ± 0.02 a | 11.31 ± 0.30 ab | 70.92 ± 7.98 a | 1.78 ± 0.13 a |
2021 | |||||||
O | 6.48 ± 0.08 a | 135.86 ± 11.86 a | 3.37 ± 0.24 a | 0.29 ± 0.02 a | 11.39 ± 0.36 a | 73.05 ± 2.72 a | 1.73 ± 0.19 a |
OC | 6.59 ± 0.07 a | 113.83 ± 11.39 a | 3.16 ± 0.32 a | 0.26 ± 0.03 a | 12.16 ± 0.36 a | 83.37 ± 2.06 a | 1.69 ± 0.10 a |
OCR | 6.42 ± 0.12 a | 113.60 ± 10.32 a | 2.99 ± 0.20 a | 0.26 ± 0.03 a | 11.75 ± 0.62 a | 76.36 ± 4.63 a | 1.67 ± 0.12 a |
2020 | 2021 | |||
---|---|---|---|---|
Soil Properties | rM | p-Value | rM | p-Value |
pH | −0.06 | 0.50 | −0.13 | 0.33 |
C | −0.001 | 0.98 | −0.04 | 0.66 |
N | 0.005 | 0.95 | −0.07 | 0.55 |
C:N | 0.083 | 0.38 | −0.07 | 0.57 |
WSA | 0.217 | 0.07 | 0.05 | 0.64 |
EC | −0.032 | 0.77 | 0.04 | 0.63 |
EE-GRSP | 0.22 | 0.02 * | 0.13 | 0.33 |
2020 | 2021 | |||
---|---|---|---|---|
Soil Properties | rM | p-Value | rM | p-Value |
pH | 0.03 | 0.69 | −0.06 | 0.64 |
C | 0.16 | 0.18 | 0.25 | 0.02 * |
N | 0.13 | 0.15 | 0.29 | 0.01 * |
C:N | 0.07 | 0.44 | −0.002 | 0.98 |
WSA | −0.09 | 0.43 | 0.05 | 0.68 |
EC | 0.01 | 0.91 | 0.18 | 0.05 * |
EE-GRSP | −0.18 | 0.06 | −0.04 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, N.; Rushing, B.R.; Acharya, A.; Ganapathi Shanmugam, S. Effect of Integrated Crop–Livestock Systems on Soil Properties and Microbial Diversity in Soybean Production. Appl. Biosci. 2024, 3, 484-502. https://doi.org/10.3390/applbiosci3040031
Sinha N, Rushing BR, Acharya A, Ganapathi Shanmugam S. Effect of Integrated Crop–Livestock Systems on Soil Properties and Microbial Diversity in Soybean Production. Applied Biosciences. 2024; 3(4):484-502. https://doi.org/10.3390/applbiosci3040031
Chicago/Turabian StyleSinha, Namita, Brett R. Rushing, Aniruddha Acharya, and Shankar Ganapathi Shanmugam. 2024. "Effect of Integrated Crop–Livestock Systems on Soil Properties and Microbial Diversity in Soybean Production" Applied Biosciences 3, no. 4: 484-502. https://doi.org/10.3390/applbiosci3040031
APA StyleSinha, N., Rushing, B. R., Acharya, A., & Ganapathi Shanmugam, S. (2024). Effect of Integrated Crop–Livestock Systems on Soil Properties and Microbial Diversity in Soybean Production. Applied Biosciences, 3(4), 484-502. https://doi.org/10.3390/applbiosci3040031