Experimental and Theoretical Insight into Different Species of p-Aminothiophenol Adsorbed on Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Preparation of Silver Colloids
2.3. Theoretical Calculations
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–176. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, Ltd.: West Sussex, UK, 2006. [Google Scholar]
- Moskovits, M. Persistent Misconceptions Regarding SERS. Phys. Chem. Chem. Phys. 2013, 15, 5301–5311. [Google Scholar] [CrossRef] [PubMed]
- Kerker, M. Selected Papers on Surface-Enhanced Raman Scattering; SPIE Milestone Series; Thompson, B.J., Ed.; SPIE: Bellingham, WA, USA, 1990. [Google Scholar]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. Rev. 1999, 990, 2957–2976. [Google Scholar] [CrossRef] [PubMed]
- Pettinger, B.; Picardi, G.; Ertl, G. Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy. Electrochemistry 2000, 68, 942–949. [Google Scholar] [CrossRef]
- Moskovits, M.; DiLella, D.P.; Mainard, K.J. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: Selection rules and molecular. Langmuir 1988, 4, 67–76. [Google Scholar] [CrossRef]
- Creighton, J.A. The Selection Rules for Surface-Enhanced Raman Spectroscopy. In Spectroscopy of Surfaces; Clark, R.J.H., Hester, R.E., Eds.; Wiley: Chichester, UK, 1988; pp. 37–89. [Google Scholar]
- Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman. J. Phys. Condens. Matter 1992, 4, 1143–1212. [Google Scholar] [CrossRef]
- Arenas, J.F.; Lopez-Tocon, I.; Otero, J.C.; Marcos, J.I. Charge Transfer Processes in Surface-Enhanced Raman Scattering. Franck−Condon Active Vibrations of Pyridine. J. Phys. Chem. 1996, 100, 9254–9261. [Google Scholar] [CrossRef]
- Arenas, J.F.; Woolley, M.S.; Otero, J.C.; Marcos, J.I. Charge-Transfer Processes in Surface-Enhanced Raman Scattering. Franck−Condon Active Vibrations of Pyrazine. J. Phys. Chem. 1996, 100, 3199–3206. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. Effect of Silver Nanoplates on Raman Spectra of p-Aminothiophenol Assembled on Smooth Macroscopic Gold and Silver Surface. J. Phys. Chem. C 2007, 111, 3259–3265. [Google Scholar] [CrossRef]
- Sun, M.; Huang, Y.; Xia, L.; Chen, X.; Xu, H. The pH Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. J. Phys. Chem. C 2011, 115, 9629–9636. [Google Scholar] [CrossRef]
- Gabudean, A.M.; Biro, D.; Astilean, S. Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Scattering (SERS) Studies of 4-Aminothiophenol Adsorption on Gold Nanorods. J. Mol. Struct. 2011, 993, 420–424. [Google Scholar] [CrossRef]
- Zong, S.; Wang, Z.; Yang, J.; Cui, Y. Intracellular pH Sensing Using p-Aminothiophenol Functionalized Gold Nanorods with Low Cytotoxicity. Anal. Chem. 2011, 83, 4178–4183. [Google Scholar] [CrossRef] [PubMed]
- Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge-Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from p-Aminothiophenol Adsorbed on Silver Herzberg-Teller Contribution. J. Phys. Chem. 1994, 98, 12702–12707. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. When the Signal Is Not from the Original Molecule to Be Detected: Chemical Transformation of para-Aminothiophenol on Ag during the SERS Measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246. [Google Scholar] [CrossRef]
- Suh, J.S.; Michaelian, K.H. Surface-enhanced Raman scattering as a probe of surface geometry effects on the polymerization of a acrylic acid on silver. J. Phys. Chem. 1987, 91, 598–600. [Google Scholar] [CrossRef]
- Chun, H.A.; Yi, S.S.; Kim, M.S.; Kim, K. Adsorption and reaction of 4-methoxycinnamonitrile on a silver surface: A surface-enhanced Raman spectroscopic study. J. Raman Spectrosc. 1990, 21, 743–749. [Google Scholar] [CrossRef]
- Castro, J.L.; Lopez Ramırez, M.R.; Lopez Tocon, I.; Otero, J.C. Surface-enhanced Raman scattering of 3-phenylpropionic acid (hydrocinnamic acid). J. Raman Spectrosc. 2002, 33, 455–459. [Google Scholar] [CrossRef]
- Lopez-Ramirez, M.R.; Aranda-Ruiz, D.; Avila-Ferrer, F.J.; Centeno, S.P.; Arenas, J.F.; Otero, J.C.; Soto, J. Analysis of the Potential Dependent Surface-Enhanced Raman Scattering of p-Aminothiophenol on the Basis of MS-CASPT2 Calculations. J. Phys. Chem. C 2016, 120, 19322–19328. [Google Scholar] [CrossRef]
- Creighton, J.A.; Blatchford, C.G.; Albrecht, M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. II 1979, 75, 790–798. [Google Scholar] [CrossRef]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16. Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Huang, Y.Z.; Fang, Y.R.; Yang, Z.L.; Sun, M.T. Can p,p′-Dimercaptoazobisbenzene Be Produced from p-Aminothiophenol by Surface Photochemistry Reaction in the Junctions of a Ag Nanoparticle−Molecule−Ag (or Au) Film? J. Phys. Chem. C 2010, 114, 18263–18269. [Google Scholar] [CrossRef]
- Cojocaru, C.; Airinei, A. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups. SpringerPlus 2013, 2, 586. [Google Scholar] [CrossRef] [PubMed]
- OriginPro. Version 2023b; OriginLab Corporation: Northampton, MA, USA, 2023. [Google Scholar]
PATP1 | PATP2 | |
---|---|---|
Optimized structures | ||
UV–Vis λmax, nm | 558 H -> L (70%) | 1048 H -> L (73%) |
DMAB1 | DMAB2 | |
Optimized structures | ||
UV–Vis λmax, nm | 462 H -> L + 1 (58%) | 445 H -> L + 2 (67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Ramírez, M.R.; García-Gómez, L.; Forte-Castro, A.; Contreras-Cáceres, R. Experimental and Theoretical Insight into Different Species of p-Aminothiophenol Adsorbed on Silver Nanoparticles. Spectrosc. J. 2024, 2, 145-153. https://doi.org/10.3390/spectroscj2030009
López-Ramírez MR, García-Gómez L, Forte-Castro A, Contreras-Cáceres R. Experimental and Theoretical Insight into Different Species of p-Aminothiophenol Adsorbed on Silver Nanoparticles. Spectroscopy Journal. 2024; 2(3):145-153. https://doi.org/10.3390/spectroscj2030009
Chicago/Turabian StyleLópez-Ramírez, María Rosa, Laura García-Gómez, Arantxa Forte-Castro, and Rafael Contreras-Cáceres. 2024. "Experimental and Theoretical Insight into Different Species of p-Aminothiophenol Adsorbed on Silver Nanoparticles" Spectroscopy Journal 2, no. 3: 145-153. https://doi.org/10.3390/spectroscj2030009
APA StyleLópez-Ramírez, M. R., García-Gómez, L., Forte-Castro, A., & Contreras-Cáceres, R. (2024). Experimental and Theoretical Insight into Different Species of p-Aminothiophenol Adsorbed on Silver Nanoparticles. Spectroscopy Journal, 2(3), 145-153. https://doi.org/10.3390/spectroscj2030009