Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

J. Exp. Theor. Anal., Volume 2, Issue 3 (September 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 7312 KiB  
Article
Comparative Analysis of Water Hammer Performance in Different Pipe Parameters with FSI
by Mostafa Kandil, Tamer A. El-Sayed and Ahmed M. Kamal
J. Exp. Theor. Anal. 2024, 2(3), 58-79; https://doi.org/10.3390/jeta2030006 - 20 Aug 2024
Viewed by 1054
Abstract
Water hammer (WH) is a critical phenomenon in fluid-filled piping systems that can lead to severe pressure surges and structural damage. The characteristics of the pipe material, geometry, and support conditions play a crucial role in the fluid–structure interaction (FSI) during WH events. [...] Read more.
Water hammer (WH) is a critical phenomenon in fluid-filled piping systems that can lead to severe pressure surges and structural damage. The characteristics of the pipe material, geometry, and support conditions play a crucial role in the fluid–structure interaction (FSI) during WH events. This study investigates the impact of various pipe parameters, including material, length, thickness, and diameter, on the WH behavior using an FSI-based numerical approach. A comprehensive computational model was developed based on the algorithm presented in Delft Hydraulics Benchmark Problem (A) to simulate the WH phenomenon in pipes made of different materials, such as steel, copper, ductile iron, PPR (polypropylene random copolymer), and GRP (glass-reinforced plastic). This study examines the influence of pipe parameters on WH performance in pipelines, utilizing FSI to analyze the phenomenon. The results show that the pipe material has a significant influence on the pressure wave speed, stress wave propagation, and the overall system response during WH. Pipes with lower modulus of elasticity, such as PPR and GRP, exhibit lower pressure wave speeds but higher stress wave speeds compared with steel pipes. Increasing the elastic modulus, pipe wall thickness, length, and diameter enhances the pipe’s stiffness and impacts the timing, magnitude of pressure surges, and the likelihood of cavitation. The findings of this study provide valuable insights into the design and mitigation of WH in piping systems. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop