Plant Essential Oils: Chemistry, Antibacterial Activity and Perspectives of Biotechnological Applications

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Plant-Derived Antibiotics".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 36077

Special Issue Editors


E-Mail Website
Guest Editor
Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
Interests: plant molecules; natural compounds; essential oil; biological activities; cellular biology; antimicrobial testing; cytofluorimetric assays
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
Interests: plant compounds; biological activities; cellular biology; microscopy assays
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Essential oils are volatile and aromatic liquids which are produced in some parts of plants and perform important roles such as in interactions with the environment and other organisms. They are rich in bioactive secondary metabolites whose concentrations considerably vary within the same species. Their production is influenced by multiple factors such as the plant development stage and the producer plant organ. Their numerous biological activities are investigated to understand roles and possible applications.

This Special Issue will cover the latest studies of collecting and processing essential oils, and their chemical composition and variability, highlighting antibacterial activities against environmental bacteria, plant and mammalian pathogens and foodborne pathogens. Contributions reporting applications in different fields such as overcoming antibiotic resistance and possible biotechnological applications in agriculture, medicine, pharmacy and cosmetics are also welcome.

Dr. Valentina Laghezza Masci
Dr. Elisa Ovidi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • essential oils
  • chemical composition
  • antibacterial activities
  • antibiotic resistance
  • environmental bacteria
  • mammalian pathogens
  • foodborne pathogens
  • biotechnology applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3255 KiB  
Article
Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap
by Micaela Guidotti-Takeuchi, Roberta Torres de Melo, Lígia Nunes de Morais Ribeiro, Carolyne Ferreira Dumont, Rosanne Aparecida Capanema Ribeiro, Bárbara de Araújo Brum, Tanaje Luiz Izidio Ferreira de Amorim Junior and Daise Aparecida Rossi
Antibiotics 2023, 12(7), 1127; https://doi.org/10.3390/antibiotics12071127 - 29 Jun 2023
Viewed by 2425
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing [...] Read more.
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels. Full article
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador
by Diana Romero, Luis Cartuche, Eduardo Valarezo, Nixon Cumbicus and Vladimir Morocho
Antibiotics 2023, 12(4), 677; https://doi.org/10.3390/antibiotics12040677 - 30 Mar 2023
Cited by 2 | Viewed by 1972
Abstract
Myrcianthes discolor, an aromatic native tree from southern Ecuador, was collected to determine the chemical composition and the biological activity of its essential oil (EO). The EO was obtained by steam-distillation and analyzed by gas chromatography coupled to a mass and a FID [...] Read more.
Myrcianthes discolor, an aromatic native tree from southern Ecuador, was collected to determine the chemical composition and the biological activity of its essential oil (EO). The EO was obtained by steam-distillation and analyzed by gas chromatography coupled to a mass and a FID detector (GC-MS and GC-FID) and a non-polar DB5-MS column. Enantioselective GC-MS analysis was performed in a chiral capillary column. The antimicrobial, antioxidant, and anticholinesterase potency of the EO was carried out by the broth microdilution method, radical scavenging assays using 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and by measuring the inhibition of the acetylcholinesterase (AChE) enzyme. A total of 58 chemical compounds were identified, corresponding to 94.80% of the EO composition. Sesquiterpenes hydrocarbons represented more than 75% of the composition. The main compounds detected were E-caryophyllene with 29.40 ± 0.21%, bicyclogermacrene with 7.45 ± 0.16%, β-elemene with 6.93 ± 0.499%, α-cubebene with 6.06 ± 0.053%, α-humulene with 3.96 ± 0.023%, and δ-cadinene with 3.02 ± 0.002%. The enantiomeric analysis revealed the occurrence of two pairs of pure enantiomers, (−)-β-pinene and (−)-α-phellandrene. The EO exerted a strong inhibitory effect against AChE with an IC50 value of 6.68 ± 1.07 µg/mL and a moderate antiradical effect with a SC50 value of 144.93 ± 0.17 µg/mL for the ABTS radical and a weak or null effect for DPPH (3599.6 ± 0.32 µg/mL). In addition, a strong antibacterial effect against Enterococcus faecium was observed with a MIC of 62.5 μg/mL and Enterococcus faecalis with a MIC of 125 μg/mL. To the best of our knowledge, this is the first report of the chemical composition and biological profile of the EO of M. discolor, and its strong inhibitory effect over AChE and against two Gram-positive pathogenic bacteria, which encourage us to propose further studies to validate its pharmacological potential. Full article
Show Figures

Figure 1

11 pages, 4143 KiB  
Article
Comprehensive Study of Components and Antimicrobial Properties of Essential Oil Extracted from Carum carvi L. Seeds
by Changhai Liu, Feng Cheng, Haji Akber Aisa and Maitinuer Maiwulanjiang
Antibiotics 2023, 12(3), 591; https://doi.org/10.3390/antibiotics12030591 - 16 Mar 2023
Cited by 6 | Viewed by 2624
Abstract
Carum carvi L. belongs to the Apiaceae family and is widely used as a vegetable, food spice, preservative, and herbal medicine. This study investigated the impact of essential oil extracted from Carum carvi L. seeds (CEO) on methicillin-resistant Staphylococcus aureus (MRSA) and its [...] Read more.
Carum carvi L. belongs to the Apiaceae family and is widely used as a vegetable, food spice, preservative, and herbal medicine. This study investigated the impact of essential oil extracted from Carum carvi L. seeds (CEO) on methicillin-resistant Staphylococcus aureus (MRSA) and its possible action mechanism. The dominant chemical components of CEO determined by GC-MS were carvone and limonene. It was observed that CEO had a considerable inhibitory effect against the growth of planktonic bacteria and biofilm in MRSA cells. Untargeted metabolomics based on GC-Q-TOF-MS was used to analyze the possible mechanism of the interaction of MRSA with CEO. It was determined that there were 63 different metabolites based on fold change values greater than 1.5 or less than 1.5, p < 0.05, VIP > 1, which demonstrated amino acid metabolism in MRSA was significantly affected by CEO. In conclusion, CEO has a potent antimicrobial property and has promising potential for use in food and drugs. Full article
Show Figures

Figure 1

13 pages, 1176 KiB  
Article
Anti-Staphylococcal Activities of Rosmarinus officinalis and Myrtus communis Essential Oils through ROS-Mediated Oxidative Stress
by Khadijetou Hamoud Bowbe, Karima Bel Hadj Salah, Sarra Moumni, Mada F. Ashkan and Abderrahmen Merghni
Antibiotics 2023, 12(2), 266; https://doi.org/10.3390/antibiotics12020266 - 28 Jan 2023
Cited by 4 | Viewed by 2389
Abstract
Rosmarinus officinalis and Myrtus communis essential oils (EOs) are well-known for their ethno-pharmaceutical properties. In the present study, we have analyzed the chemical composition of both EOs by gas chromatography-mass spectrometry. Then we assessed their antibacterial, antibiofilm, and anti-virulence actions against the opportunistic [...] Read more.
Rosmarinus officinalis and Myrtus communis essential oils (EOs) are well-known for their ethno-pharmaceutical properties. In the present study, we have analyzed the chemical composition of both EOs by gas chromatography-mass spectrometry. Then we assessed their antibacterial, antibiofilm, and anti-virulence actions against the opportunistic pathogen Staphylococcus aureus. The cytotoxic effect of agents tested against this bacterium was investigated by monitoring reactive oxygen-species (ROS) generation and antioxidant-enzyme (catalase) production. Regarding the antistaphylococcal effects, our results showed antibacterial efficacy of both Eos and their combination, where the minimum inhibitory concentrations ranged between 0.7 and 11.25 mg/mL. A combination of tested agents showed the highest anti-hemolytic and anti-protease effects. Additionally, association between EOs displayed more potency against the development of biofilm performed by S. aureus, with percentage of removal reaching 74%. The inhibitory impacts of EOs on S. aureus virulence factors were discovered to be concentration-dependent. Furthermore, our results provide insight on the abilities of R. officinalis and M. communis EOs, as well as their potential in combination, to generate ROS and affect oxidative stress enzyme catalase in S. aureus, leading to their antagonistic effect against this pathogen. Full article
Show Figures

Figure 1

24 pages, 2078 KiB  
Article
A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae)
by Alessandra Guerrini, Massimo Tacchini, Ilaria Chiocchio, Alessandro Grandini, Matteo Radice, Immacolata Maresca, Guglielmo Paganetto and Gianni Sacchetti
Antibiotics 2023, 12(1), 177; https://doi.org/10.3390/antibiotics12010177 - 15 Jan 2023
Cited by 9 | Viewed by 3509
Abstract
Essential oils (EOs) and their vapour phase of Curcuma longa (Zingiberaceae), Cymbopogon citratus (Poaceae), Ocimum campechianum (Lamiaceae), and Zingiber officinale (Zingiberaceae) of cultivated plants grown in an Amazonian Ecuador area were chemically characterised by Gas Chromatography-Flame Ionization Detector (GC-FID), Gas Chromatography–Mass Spectrometry (GC-MS), [...] Read more.
Essential oils (EOs) and their vapour phase of Curcuma longa (Zingiberaceae), Cymbopogon citratus (Poaceae), Ocimum campechianum (Lamiaceae), and Zingiber officinale (Zingiberaceae) of cultivated plants grown in an Amazonian Ecuador area were chemically characterised by Gas Chromatography-Flame Ionization Detector (GC-FID), Gas Chromatography–Mass Spectrometry (GC-MS), and Head Space–Gas Chromatograph-Flame Ionization Detector–Mass Spectrometry (HS-GC-FID-MS).figure The EOs analyses led to the identification of 25 compounds for C. longa (99.46% of the total; ar-turmerone: 23.35%), 18 compounds for C. citratus (99.59% of the total; geraniol: 39.43%), 19 compounds for O. campechianum (96.24% of the total; eugenol: 50.97%), and 28 for Z. officinale (98.04% of the total; α-Zingiberene: 15.45%). The Head Space fractions (HS) revealed C. longa mainly characterised by limonene and 1,8-cineole (37.35%) and α-phellandrene (32.33%); Z. officinale and C. citratus showed camphene (50.39%) and cis-Isocitral (15.27%) as the most abundant compounds, respectively. O. campechianum EO revealed a higher amount of sesquiterpenes (10.08%), mainly characterised by E-caryophyllene (4.95%), but monoterpene fraction remained the most abundant (89.94%). The EOs were tested for antioxidant, antimicrobial, and mutagen-protective properties and compared to the Thymus vulgaris EO as a positive reference. O. campechianum EO was the most effective in all the bioactivities checked. Similar results emerged from assaying the bioactivity of the vapour phase of O. campechianum EO. The antioxidant and antimicrobial activity evaluation of O. campechianum EO were repeated through HP-TLC bioautography assay, pointing out eugenol as the lead compound for bioactivity. The mutagen-protective evaluation checked through Ames’s test properly modified evidenced a better capacity of O. campechianum EO compared with the other EOs, reducing the induced mutagenicity at 0.1 mg/plate. However, even with differences in efficacy, the overall results suggest important perspectives for the functional use of the four studied EOs. Full article
Show Figures

Figure 1

14 pages, 1208 KiB  
Article
Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.)
by Vladimir Morocho, Mariangel Hidalgo-Tapia, Israel Delgado-Loyola, Luis Cartuche, Nixon Cumbicus and Eduardo Valarezo
Antibiotics 2023, 12(1), 82; https://doi.org/10.3390/antibiotics12010082 - 3 Jan 2023
Cited by 5 | Viewed by 2472
Abstract
Siparuna muricata is an aromatic native shrub or tree from Ecuador known as “limoncillo” or “limón de la sierra” due to its citrus odor. In this study, the chemical composition and biological activity of essential oil from the leaves and fruits of this [...] Read more.
Siparuna muricata is an aromatic native shrub or tree from Ecuador known as “limoncillo” or “limón de la sierra” due to its citrus odor. In this study, the chemical composition and biological activity of essential oil from the leaves and fruits of this species was determined. The essential oil was isolated by subjected to hydrodistillation. The chemical composition was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to mass spectrometry. The enantiomeric distribution was determined by gas chromatography using an enantioselective column. The antimicrobial activity against three Gram-positive bacteria, two Gram-negative bacteria and two fungi was determined by the broth microdilution method. The antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydryl free radical and 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid radical cation scavenging activity of essential oil. The acetylcholinesterase inhibitory effect of the essential oil was measured using a spectrophotometric method. The yield was 1.2 ± 0.1 mL/kg for leaves and 1.8 ± 0.2 mL/kg for fruits. A total of 51 compounds were identified in the leaves of the essential oil and 41 in the fruits. In both cases, the chemical compositions were dominated by the group of monoterpene hydrocarbons compounds. The main compound was α-pinene with 23.22 ± 1.03% in essential oil of the leaves and limonene with 24.92 ± 1.20% in the fruits. In both essential oils, five pairs of enantiomers with different enantiomeric excesses were identified. The essential oil of limoncillo leaves presented a strong activity against the fungus Aspergillus niger (ATTC 10231) and Gram-positive bacterium Enterococcus faecium (ATCC 27270) with a MIC of 250 μg/mL and 500 μg/mL, respectively. The essential oil from fruits and leaves of Siparuna muricata presented a moderate antioxidant activity with the ABTS method with a SC50 of 775.3 ± 1.3 µg/mL and 963.3 ± 1.6 µg/mL, respectively. Additionally, the leaves essential oil reported an IC50 value of 52.98 ± 1.04 µg/mL and the fruits essential oil an IC50 value of 98.84 ± 1.04 µg/mL, which can be considered a very strong anticholinesterase activity. Full article
Show Figures

Figure 1

14 pages, 1026 KiB  
Article
Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia
by Jawaher J. Albaqami, Hamida Hamdi, Arunaksharan Narayanankutty, Naduvilthara U. Visakh, Anju Sasidharan, Aswathi Moothakoottil Kuttithodi, Ademola C. Famurewa and Berin Pathrose
Antibiotics 2022, 11(11), 1547; https://doi.org/10.3390/antibiotics11111547 - 3 Nov 2022
Cited by 22 | Viewed by 4391
Abstract
Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered [...] Read more.
Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered as an agrowaste. The valorization of these Curcuma leaf wastes into essential oils is becoming accepted globally. In the present study, we aim to extract essential oils from the leaves of Curcuma longa (LEO), C. aromatica (REO), and C. anguistifolia (NEO). The chemical composition of these essential oils was analyzed by GC-MS. Free radical scavenging properties were evaluated against the radical sources, including DPPH, ABTS, and hydrogen peroxide. The antibacterial activity was assessed by the disc diffusion method and Minimum inhibitory concentration analysis against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacteria. Results identified the compounds α-phellandrene, 2-carene, and eucalyptol as predominant in LEO. The REO was predominated by camphor, 2-bornanone, and curdione. The main components detected in NEO were eucalyptol, curzerenone, α-lemenone, longiverbenone, and α-curcumene. Antioxidant properties were higher in the LEO with IC50 values of 8.62 ± 0.18, 9.21 ± 0.29, and 4.35 ± 0.16 μg/mL, against DPPH, ABTS, and hydrogen peroxide radicals. The cytotoxic activity was also evident against breast cancer cell lines MCF-7 and MDA-MB-231 cells; the LEO was found to be the most active against these two cell lines (IC50 values of 40.74 ± 2.19 and 45.17 ± 2.36 μg/mL). Likewise, the results indicated a higher antibacterial activity for Curcuma longa essential oil with respective IC50 values (20.6 ± 0.3, 22.2 ± 0.3, 20.4 ± 0.2, and 17.6 ± 0.2 mm). Hence, the present study confirms the possible utility of leaf agrowastes of different Curcuma spp. as a possible source of essential oils with pharmacological potential. Full article
Show Figures

Figure 1

17 pages, 1772 KiB  
Article
In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples
by Abdelhakim Aouf, Sarah Bouaouina, Mohamed A. Abdelgawad, Mohammed A. S. Abourehab and Amr Farouk
Antibiotics 2022, 11(10), 1317; https://doi.org/10.3390/antibiotics11101317 - 27 Sep 2022
Cited by 19 | Viewed by 3004
Abstract
In the context of the globally growing problem of resistance to most used antibacterial agents, essential oils offer promising solutions against multidrug-resistant (MDR) bacterial pathogens. The present study aimed to evaluate the prevalence, etiology, and antibiotic-resistance profiles of bacteria responsible for pyogenic infections [...] Read more.
In the context of the globally growing problem of resistance to most used antibacterial agents, essential oils offer promising solutions against multidrug-resistant (MDR) bacterial pathogens. The present study aimed to evaluate the prevalence, etiology, and antibiotic-resistance profiles of bacteria responsible for pyogenic infections in Regional Military University Hospital of Constantine. Disc diffusion and broth microdilution (MIC) methods were used to evaluate the antimicrobial activity of essential oils from five Algerian aromatic plants growing wild in the north of Algeria—Salvia officinalis (Sage), Thymus vulgaris (Thyme), Mentha pulegium L. (Mentha), Rosmarinus officinalis (Rosemary), and Pelargonium roseum (Geranium)—against reference and MDR strains. During three months of the prospective study, 112 isolates out of 431 pus samples were identified. Staphylococcus aureus was the most predominant species (25%), followed by Klebsiella pneumoniae (21.42%), Pseudomonas aeruginosa (21%), and Escherichia coli (17.95%). Among pus isolates, 65 were MDR (58.03%). The radial streak-line assay showed that R. officinalis and M. pulegium L. had weak activity against the tested strains, whereas P. roseum showed no activity at all. Meanwhile, T. vulgaris was the most potent, with an inhibition zone of 12–26 mm and an MIC value ranging between 0.25 and 1.25%, followed by S. officinalis with an inhibition zone of 8–12 mm and an MIC value ranging between 0.62 and 2.5%. Generally, A. baumannii and S. aureus ATCC6538P were the most sensitive strains, whereas P. aeruginosa ATCC27853 was the most resistant strain to the oils. Gas chromatography–mass spectrometry analysis of chemical composition revealed the presence of borneol (76.42%) and thymol (17.69%) as predominant in thyme, whereas camphor (36.92%) and α- thujone (34.91%) were the major volatiles in sage. The in-silico study revealed that sesquiterpenes and thymol had the highest binding free energies against the vital enzymes involved in biosynthesis and repair of cell walls, proteins, and nucleic acids compared to monoterpenes. The results demonstrated that T. vulgaris and S. officinalis are ideal candidates for developing future potentially active remedies against MDR strains. Full article
Show Figures

Figure 1

19 pages, 2632 KiB  
Article
Variability in Biological Activities of Satureja montana Subsp. montana and Subsp. variegata Based on Different Extraction Methods
by Milica Aćimović, Olja Šovljanski, Lato Pezo, Vanja Travičić, Ana Tomić, Valtcho D. Zheljazkov, Gordana Ćetković, Jaroslava Švarc-Gajić, Tanja Brezo-Borjan and Ivana Sofrenić
Antibiotics 2022, 11(9), 1235; https://doi.org/10.3390/antibiotics11091235 - 11 Sep 2022
Cited by 16 | Viewed by 2725
Abstract
Winter savory (Satureja montana L.) is a well-known spice and medicinal plant with a wide range of activities and applications. Two subspecies of S. montana, subsp. montana and subsp. variegata, were used for the preparation of seven different extracts: steam [...] Read more.
Winter savory (Satureja montana L.) is a well-known spice and medicinal plant with a wide range of activities and applications. Two subspecies of S. montana, subsp. montana and subsp. variegata, were used for the preparation of seven different extracts: steam distillation (essential oil (EO) and hydrolate (HY)), subcritical water (SWE), ultrasound-assisted (UAE-MeOH and UAE-H2O), and microwave-assisted (MAE-MeOH and MAE-H2O) extraction. The obtained EOs, HYs, and extracts were used for an in vitro evaluation of the antioxidant activity (DPPH, ABTS, reducing power, and superoxide anion methods) and in vitro antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Salmonella Typhimurium, Saccharomyces cerevisiae, and Candida albicans. The antimicrobial screening was conducted using disk-diffusion assessment, minimal inhibitory concentration, time–kill kinetics modeling, and pharmacodynamic study of the biocide effect. The total phenolic content (TPC) was highest in EO, followed by SWE, MAE, and UAE, and the lowest was in HY. The highest antimicrobial activity shows EO and SWE for both varieties, while different UAE and MAE extracts have not exhibited antimicrobial activity. The natural antimicrobials in the S. montana extract samples obtained by green extraction methods, indicated the possibility of ecologically and economically better solutions for future in vivo application of the selected plant subspecies. Full article
Show Figures

Figure 1

14 pages, 7397 KiB  
Article
Comparative Analysis of the Antimicrobial Activity of Essential Oils and Their Formulated Microemulsions against Foodborne Pathogens and Spoilage Bacteria
by Raffaella Campana, Mattia Tiboni, Filippo Maggi, Loredana Cappellacci, Kevin Cianfaglione, Mohammad Reza Morshedloo, Emanuela Frangipani and Luca Casettari
Antibiotics 2022, 11(4), 447; https://doi.org/10.3390/antibiotics11040447 - 25 Mar 2022
Cited by 20 | Viewed by 4865
Abstract
The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum [...] Read more.
The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum), Cuminum cyminum L. (C. cyminum), x Cupressocyparis leylandii A.B. Jacks & Dallim. (C. leylandii), Cupressus arizonica Greene (C. arizonica), Ferula assa-foetida L. (F. assa-foetida)., Ferula gummosa Boiss. (F. gummosa), Juniperus communis L. (J. communis), Juniperus x pfitzeriana (Spath) P.A. Schmidt (J. pfitzeriana), Pimpinella anisum L (P. anisum). Preliminary screening revealed that Cuminum cyminum, Crithmum maritimum, and Pimpinella anisum (10% v/v) were effective against all tested microorganisms (Escherichia coli ATCC 35218, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 29213, Pseudomonas fluorescens DSM 4358, and Candida albicans ATCC 10231), with growth inhibition diameter from 10 to 25 mm. These EOs were used to formulate the MEs with an average size < 50 nm and a good stability over 30 days. EOs’ antimicrobial activity was further enhanced in the MEs, with a generalized lowering of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. C. cyminum-ME reached, in most cases, MIC two times lower (0.312%) than the corresponding EO (0.625%) and even eight times lower against S. aureus (0.156 vs. 1.25%). A more remarkable microbicide effect was noted for C. cyminum-ME, with MBC values eight times lower (from 0.312 to 0.625%) than the corresponding EO (from 2.5 to 5%). Overall, MEs resulted in an efficient system for EOs encapsulation, enhancing solubility and lowering concentration to exert antimicrobial efficacy. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

19 pages, 1685 KiB  
Review
trans-Cinnamaldehyde as a Novel Candidate to Overcome Bacterial Resistance: An Overview of In Vitro Studies
by Federica Usai and Antonella Di Sotto
Antibiotics 2023, 12(2), 254; https://doi.org/10.3390/antibiotics12020254 - 27 Jan 2023
Cited by 18 | Viewed by 4182
Abstract
The increasing of drug-resistant bacteria and the scanty availability of novel effective antibacterial agents represent alarming problems of the modern society, which stimulated researchers to investigate novel strategies to replace or assist synthetic antibiotics. A great deal of attention has been devoted over [...] Read more.
The increasing of drug-resistant bacteria and the scanty availability of novel effective antibacterial agents represent alarming problems of the modern society, which stimulated researchers to investigate novel strategies to replace or assist synthetic antibiotics. A great deal of attention has been devoted over the years to essential oils that contain mixtures of volatile compounds and have been traditionally exploited as antimicrobial remedies. Among the essential oil phytochemicals, remarkable antimicrobial and antibiotic-potentiating activities have been highlighted for cinnamaldehyde, an α,β-unsaturated aldehyde, particularly abundant in the essential oils of Cinnamomum spp., and widely used as a food additive in industrial products. In line with this evidence, in the present study, an overview of the available literature has been carried out in order to define the bacterial sensitizing profile of cinnamaldehyde. In vitro studies displayed the ability of the substance to resensitize microbial strains to drugs and increase the efficacy of different antibiotics, especially cefotaxime, ciprofloxacin, and gentamicin; however, in vivo, and clinical trials are lacking. Based on the collected findings, cinnamaldehyde appears to be of interest as an adjuvant agent to overcome superbug infections and antibiotic resistance; however, future more in-dept studies and clinical investigations should be encouraged to clarify its efficacy and the mechanisms involved. Full article
Show Figures

Figure 1

Back to TopTop