applsci-logo

Journal Browser

Journal Browser

Spotlights on Transglutaminase Genes and Functions

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Biosciences and Bioengineering".

Deadline for manuscript submissions: closed (10 May 2022) | Viewed by 2224

Special Issue Editor


E-Mail Website
Guest Editor
Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
Interests: biochemistry and molecular biology of transglutaminases; neurodegeneration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Transglutaminases are a family of Ca2+-dependent enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other secondary nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted/crosslinked adducts) or –OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in a net deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be involved in molecular mechanisms responsible for both physiological or pathological processes. In particular, transglutaminase activity has been shown to be responsible for human autoimmune diseases, and celiac disease is just one of them. More recently, several scientific reports have shown that neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this Special Issue we will focus on the discovery of new transglutaminase genes and functions.

Prof. Dr. Vittorio Gentile
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • transglutaminases
  • post-translational modifications of proteins
  • biochemistry and molecular biology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2302 KiB  
Article
Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells
by Nicola Gaetano Gatta, Andrea Parente, Francesca Guida, Sabatino Maione and Vittorio Gentile
Appl. Sci. 2021, 11(12), 5718; https://doi.org/10.3390/app11125718 - 20 Jun 2021
Cited by 4 | Viewed by 1791
Abstract
Background: Tissue type 2 transglutaminase (TG2, E.C. 2.3.2,13) is reported to be involved in the phagocytosis of apoptotic cells in mouse microglial BV2 cells and peripheral macrophages. In this study, by using lipopolysaccharide (LPS)- or amyloid-β 1-42 (Aβ 1-42) peptide-stimulated microglial cell line [...] Read more.
Background: Tissue type 2 transglutaminase (TG2, E.C. 2.3.2,13) is reported to be involved in the phagocytosis of apoptotic cells in mouse microglial BV2 cells and peripheral macrophages. In this study, by using lipopolysaccharide (LPS)- or amyloid-β 1-42 (Aβ 1-42) peptide-stimulated microglial cell line BV2 and mouse primary microglial cells, we examined the effects of different neuronutraceutical compounds, such as curcumin (Cu) and N-Palmitoylethanolamine (PEA), known for their anti-inflammatory activity, on TG2 and several inflammatory or neuroprotective biomarker expressions. Methods: Mouse BV2 cells were treated with LPS or Aβ1-42 in the presence of curcumin or PEA, in order to evaluate the expression of TG2 and other inflammatory or neuroprotective markers using Real Time-PCR and Western blot analyses. Results: Curcumin and PEA were capable of reducing TG2 expression in mouse microglial cells during co-treatment with LPS or Aβ 1-42. Conclusions: The results show the role of TG2 as an important marker of neuroinflammation and suggest a possible use of curcumin and PEA in order to reduce LPS- or Aβ1-42-induced TG2 overexpression in mouse microglial cells. Full article
(This article belongs to the Special Issue Spotlights on Transglutaminase Genes and Functions)
Show Figures

Figure 1

Back to TopTop