Ionospheric Sounding for Identification of Pre-seismic Activity

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Upper Atmosphere".

Deadline for manuscript submissions: closed (21 January 2025) | Viewed by 13171

Special Issue Editors


E-Mail Website
Guest Editor
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Interests: electromagnetic wave propagation; VLF/ELF EM wave in the ionosphere

E-Mail Website
Guest Editor
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Interests: remote sensing
Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
Interests: electromagnetic wave propagation; seismic ionospheric coupling

Special Issue Information

Dear Colleagues,

Research over the last few decades has shown that the seismogenic process influences the ionosphere through a number of coupling mechanisms, resulting in ionospheric disruption. Ionospheric disturbances, such as electron density anomalies, could arise in the D/E, F, and topside layers. For seismic ionospheric anomalies at various altitudes, various detection technologies, such as ionosonde for the critical frequency of the F2 layer, the GPS-TEC, and so on, can be used.

In recent years, a large number of near-Earth spacecraft, such as CSES, GOES, Cluster, THEMIS, the Van Allen Probes, MMS, Arase, and Swarm, have been used in conjunction with ground-based observatories, such as the MAGDAS, SuperMAG, and INTERMAGNET networks, to study the ionospheric anomalies caused by seismic activity.

The goal of this Special Issue is to compile the most recent advances in understanding ionospheric anomalies during earthquake preparation and occurrence processes. This Special Issue includes, but is not limited to, the following features:.

  • Ground and ionospheric observations based on ground receivers, ionosonde or low-Earth-orbit satellites and the study of their relationships with earthquakes.
  • Infrared or hyperspectral parameter observations and analyses related to pre-seismic activites.
  • Integrated observations from multi-spheres for the study of lithosphere–atomosphere–ionosphere coulping (LAIC) in regard to earthquakes.
  • Models and observations of low-frequency (ULF/ELF/VLF) electromagnetic wave

Dr. Shufan Zhao
Dr. Xuhui Shen
Dr. Li Liao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ionospheric sounding
  • pre-seismic activities
  • LAIC model
  • infrared or hyperspectral observations
  • integrated observations for earthquakes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 11007 KiB  
Article
Research on the Detection Model of Kernel Anomalies in Ionospheric Space Electric Fields
by Xingsu Li, Zhong Li, Jianping Huang, Ying Han, Yumeng Huo, Junjie Song and Bo Hao
Atmosphere 2025, 16(2), 160; https://doi.org/10.3390/atmos16020160 - 31 Jan 2025
Viewed by 270
Abstract
Research has found kernel anomaly regions in the power spectrum images of ionospheric electric fields in space, which are widely distributed. To effectively detect these kernel abnormal regions, this paper proposes a new kernel abnormal region detection method, KANs-Unet, based on KANs and [...] Read more.
Research has found kernel anomaly regions in the power spectrum images of ionospheric electric fields in space, which are widely distributed. To effectively detect these kernel abnormal regions, this paper proposes a new kernel abnormal region detection method, KANs-Unet, based on KANs and U-net networks. The model embeds the KAN-Conv convolutional module based on KANs in the encoder section, introduces the feature pyramid attention module (FPA) at the junction of the encoder and decoder, and introduces the CBAM attention mechanism module in the decoder section. The experimental results show that the improved KANs-Unet model has a mIoU improvement of about 10% compared to the PSPNet algorithm and an improvement of about 7.8% compared to the PAN algorithm. It has better detection performance than the currently popular semantic segmentation algorithms. A higher evaluation index represents that the detected abnormal area is closer to the label value (i.e., the detected abnormal area is more complete), indicating better detection performance. To further investigate the characteristics of kernel anomaly areas and the differences in features during magnetic storms, the author studied the characteristics of kernel anomaly areas during two different intensities of magnetic storms: from November 2021 to October 2022 and from 1 May 2024 to 13 May 2024 (large magnetic storm), and from 11 October 2023 to 23 October 2023 (moderate magnetic storm). During a major geomagnetic storm, the overall distribution of kernel anomaly areas shows a parallel trend with a band-like distribution. The spatial distribution of magnetic latitudes is relatively scattered, especially in the southern hemisphere, where the magnetic latitudes are wider. Additionally, the number of orbits with kernel anomaly areas during ascending increases, especially during peak periods of major geomagnetic storms. The overall spatial distribution of moderate geomagnetic storms does not change significantly, but the global magnetic latitude distribution is relatively concentrated. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

19 pages, 7527 KiB  
Article
Satellite Signatures of Pre-Seismic Atmospheric Anomalies of 6 February 2023 Türkiye Earthquakes
by Maria Zoran, Dan Savastru and Marina Tautan
Atmosphere 2024, 15(12), 1514; https://doi.org/10.3390/atmos15121514 - 18 Dec 2024
Viewed by 549
Abstract
Time series satellite data, coupled with available ground-based observations, enable geophysicists to survey earthquake precursors in areas of strong geotectonic activity. This paper is focused on pre-seismic atmospheric disturbances resulting from the stress accumulated during the seismogenic process related to the 6 February [...] Read more.
Time series satellite data, coupled with available ground-based observations, enable geophysicists to survey earthquake precursors in areas of strong geotectonic activity. This paper is focused on pre-seismic atmospheric disturbances resulting from the stress accumulated during the seismogenic process related to the 6 February 2023 Kahramanmaras doublet earthquake sequence in Türkiye. We investigated the pre- and post-seismic anomalies of multiple precursors of different spatiotemporal patterns from MODIS Terra/Aqua and NOAA-AVHRR satellite data (air temperature at 2 m height—AT, air relative humidity—RH, and air pressure—AP, surface outgoing long-wave radiation—OLR, and land surface temperature—LST). Pre-seismic recorded anomalies of AT within seven months and OLR within one month before the main shocks suggested the existence of the preparatory process of the Kahramanmaras doublet earthquake. The 8-Day LST_Day and LST_night data evidenced pre-seismic and post-seismic thermal anomalies for both the Pazarcik and Elbistan earthquakes. The results of this study highlight that the spatiotemporal evolution of earthquake precursors can be important information for updating the seismic hazard in geotectonic active areas. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

21 pages, 4546 KiB  
Article
Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate
by Essam Ghamry, Dedalo Marchetti and Mohamed Metwaly
Atmosphere 2024, 15(11), 1318; https://doi.org/10.3390/atmos15111318 - 2 Nov 2024
Viewed by 1317
Abstract
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia [...] Read more.
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia (Yemen) and in 2022, close to Bandar-e Lengeh (Iran). For all the cases, we considered the equivalent event in terms of total released energy and mean epicentral coordinates. The lithosphere was investigated by calculating the cumulative Benioff strain with the USGS earthquake catalogue. Several atmospheric parameters (aerosol, SO2, CO, surface air temperature, surface latent heat flux humidity, and dimethyl sulphide) have been monitored using the homogeneous data from the MERRA-2 climatological archive. We used the three-satellite Swarm constellation for magnetic data, analysing the residuals after removing a geomagnetic model. The analysis of the three geo-layers depicted an interesting chain of lithosphere, atmosphere, and ionosphere anomalies, suggesting a geophysical coupling before the Dehloran (Iran) 2014 earthquake. In addition, we identified interesting seismic accelerations that preceded the last 20 days, the Kilmia (Yemen) 2018 and Bandar-e Lengeh (Iran) 2022 earthquake doublets. Other possible interactions between the geolayers have been observed, and this underlines the importance of a multiparametric approach to properly understand a geophysical complex topic as the preparation phase of an earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

13 pages, 1209 KiB  
Article
Classifying Seismic Events Linked to Solar Activity: A Retrospective LSTM Approach Using Proton Density
by Aizhan Altaibek, Marat Nurtas, Zhumabek Zhantayev, Beibit Zhumabayev and Ayazhan Kumarkhanova
Atmosphere 2024, 15(11), 1290; https://doi.org/10.3390/atmos15111290 - 27 Oct 2024
Viewed by 1954
Abstract
The influence of solar activity on seismic activity is a subject of debate. Previous studies have shown that there is sometimes a correlation and sometimes a contradiction between solar activity maxima and large earthquakes. Long-term memory neural network is used to study the [...] Read more.
The influence of solar activity on seismic activity is a subject of debate. Previous studies have shown that there is sometimes a correlation and sometimes a contradiction between solar activity maxima and large earthquakes. Long-term memory neural network is used to study the relationship between solar activity and seismic activity. This study emphasizes retrospective classification rather than direct prediction, refining the LSTM architecture to maximize classification accuracy and processing data from the Solar and Heliospheric Observatory and the U.S. Geological Survey earthquake catalogs. A declustering technique is used to select large seismic events and weighted learning corrects for class imbalances. The LSTM model accurately classified earthquakes (84.47%) and proton density variations. The results support the theory that solar activity, in particular proton density, can anticipate earthquake events. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

18 pages, 937 KiB  
Article
Integrated Analysis of Multi-Parameter Precursors to the Fukushima Offshore Earthquake (Mj = 7.3) on 13 February 2021 and Lithosphere–Atmosphere–Ionosphere Coupling Channels
by Masashi Hayakawa and Yasuhide Hobara
Atmosphere 2024, 15(8), 1015; https://doi.org/10.3390/atmos15081015 - 21 Aug 2024
Cited by 2 | Viewed by 2374
Abstract
The preparation phase of earthquakes (EQs) has been investigated by making full use of multi-parameter and multi-layer observations of EQ precursors, in order to better understand the lithosphere–atmosphere–ionosphere coupling (LAIC) process. For this purpose, we chose a specific target EQ, the huge EQ [...] Read more.
The preparation phase of earthquakes (EQs) has been investigated by making full use of multi-parameter and multi-layer observations of EQ precursors, in order to better understand the lithosphere–atmosphere–ionosphere coupling (LAIC) process. For this purpose, we chose a specific target EQ, the huge EQ of Fukushima-ken-oki EQ on 13 February 2021 (magnitude Mj = 7.3). We initially reported on EQ precursors in different physical parameters not only of the lithosphere, but also of the atmosphere and ionosphere (Hayakawa et al. followed by Akhoondzadeh et al. and Draz et al., both based on satellite observations). Our first two papers dealt with seven electromagnetic precursors in the three layers (with emphasis on our own ground-based observations in the atmosphere and lower ionosphere), while the second paper dealt with Swarm satellite observations of magnetic field, electron density, and GPS TEC in the ionosphere, and the third paper dealt only with climatological parameters on and above the Earth’s surface (together with GPS TEC). We have extensively reviewed all of these results, and have coordinated the temporal evolutions of various physical parameters relevant to the LAIC system; we have sought to understand which hypothesis is more plausible in explaining the LAIC process. Then, we came to a conclusion that two possible LAIC channels seem to exist simultaneously for this EQ: a fast channel (nearly simultaneous responses on the ground and ionosphere), and a slow channel (or diffusion-type), with a time delay of a few to several days, in which the agent effects in the lithosphere and lowest atmosphere seem to propagate up to the ionosphere with a definite time delay. Finally, we have suggested some research directions for the future elucidation of LAIC channels, and also made some comments on an early EQ warning system. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

22 pages, 18622 KiB  
Article
Spatio–Temporal Evolution of Electric Field, Magnetic Field and Thermal Infrared Remote Sensing Associated with the 2021 Mw7.3 Maduo Earthquake in China
by Muping Yang, Xuemin Zhang, Meijiao Zhong, Yufan Guo, Geng Qian, Jiang Liu, Chao Yuan, Zihao Li, Shuting Wang, Lina Zhai, Tongxia Li and Xuhui Shen
Atmosphere 2024, 15(7), 770; https://doi.org/10.3390/atmos15070770 - 27 Jun 2024
Cited by 1 | Viewed by 878
Abstract
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. [...] Read more.
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. Specifically, we analyzed the power spectrum density (PSD) data of the electric field in the extremely low frequency (ELF) band, the geomagnetic east–west vector data, and the temperature of brightness blackbody (TBB) data to investigate the spatio–temporal evolution characteristics under quiet space weather conditions (Dst > −30 nT and Kp < 3). Results showed that (1) the TBB radiation began to increase notably along the northern fault of the epicenter ~1.5 months prior to the occurrence of the earthquake. It achieved its maximum intensity on 17 May, and the earthquake occurred as the anomalies decreased. (2) The PSD in the 371 Hz–500 Hz and 700 Hz–871 Hz bands exhibited anomaly perturbations near the epicenter and its magnetic conjugate area on May 17, with particularly notable perturbations observed in the latter. The anomaly perturbations began to occur ~1 month before the earthquake, and the earthquake occurred as the anomalies decreased. (3) Both the magnetic –east–west component vector data and the ion velocity Vx data exhibited anomaly perturbations near the epicenter and the magnetic conjugate area on 11 May and 16 May. (4) The anomaly perturbations in the thermal infrared TBB data, CSES electric field, and magnetic field data all occurred within a consistent perturbation time period and spatial proximity. We also conducted an investigation into the timing, location, and potential causes of the anomaly perturbations using the Vx ion velocity data with magnetic field –east–west component vector data, as well as the horizontal –north–south and vertical component PSD data of the electric field with the magnetic field –east–west component vector data. There may be both chemical and electromagnetic wave propagation models for the “lithosphere—atmosphere—ionosphere” coupling (LAIC) mechanism of the Maduo earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

15 pages, 9168 KiB  
Article
Quasi-Synchronous Variations in the OLR of NOAA and Ionospheric Ne of CSES of Three Earthquakes in Xinjiang, January 2020
by Chen Yu, Jing Cui, Wanchun Zhang, Weiyu Ma, Jing Ren, Bo Su and Jianping Huang
Atmosphere 2023, 14(12), 1828; https://doi.org/10.3390/atmos14121828 - 15 Dec 2023
Cited by 1 | Viewed by 1382
Abstract
The successive tidal force (TF) at the epicenter of the Jiashi M6.6 earthquake in Xinjiang, China, was calculated for the period from 13 December 2019 to 10 February 2020. With periodic changes in tide-generating forces, the variations in the electron density (Ne) data [...] Read more.
The successive tidal force (TF) at the epicenter of the Jiashi M6.6 earthquake in Xinjiang, China, was calculated for the period from 13 December 2019 to 10 February 2020. With periodic changes in tide-generating forces, the variations in the electron density (Ne) data recorded by the China Seismo-Electromagnetic Satellite (CSES) and outgoing longwave radiation (OLR) data provided by NOAA on a large scale at N25°–N55°, E65°–E135° were studied. The results show that (1) in the four cycles during which the TF changes from trough to peak, the earthquake occurred during one peak time when the OLR changed around the epicenter via calm–rise processions and in other similar TF phases, and neither an increase in the OLR nor earthquake occurred. (2) With a change in the TF, the spatiotemporal evolution of the OLR from seismogenic processes to its occurrence was as follows: microenhancement–enhancement–microattenuation–enhancement–calmness; this is consistent with the evolution of outward infrared radiation when rocks break under stress loading: microrupture–rupture–locking–accelerated rupture–rupture. (3) Ne increased significantly during the seismogenic period and was basically consistent with OLR enhancement. The results indicate that as the TF increases, the Earth’s stress accumulates at a critical point, and the OLR increases and transfers upward. The theoretical hypothesis underlying the conducted study is that the accumulated electrons on the surface cause negatively charged electrons in the atmosphere to move upward, resulting in an increase in ionospheric Ne near the epicenter, which reveals the homology of seismic stress variations in the spatial coupling process. The quasi-synchronous change process of these three factors suggests that the TF changed the process of the stress accumulation–imbalance in the interior structure of this earthquake and has the effect of triggering the earthquake, and the spatiotemporal variations in the OLR and ionospheric Ne could be indirect reflections of in situ stress. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

12 pages, 3299 KiB  
Article
Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite
by Honggeng Cai, Shufan Zhao, Li Liao, Xuhui Shen and Hengxin Lu
Atmosphere 2023, 14(12), 1816; https://doi.org/10.3390/atmos14121816 - 13 Dec 2023
Cited by 1 | Viewed by 1320
Abstract
Very Low Frequency (VLF) waves radiated from ground-based transmitters are crucial for long-distance communication and underwater navigation. These waves can reflect between the Earth’s surface and the ionosphere for Earth–ionosphere waveguide propagation. Additionally, they can penetrate not only the ionosphere but also the [...] Read more.
Very Low Frequency (VLF) waves radiated from ground-based transmitters are crucial for long-distance communication and underwater navigation. These waves can reflect between the Earth’s surface and the ionosphere for Earth–ionosphere waveguide propagation. Additionally, they can penetrate not only the ionosphere but also the magnetosphere, where they interact with high-energy particles in the radiation belt. Therefore, studying the spatial and temporal distribution of VLF radio signals holds significant importance. Such research enables us to understand the propagation characteristics of VLF signals, their interaction with radiation belt particles, and their response to space weather and lithospheric activity events. In this paper, we investigate the seasonal variations in the intensity of the Northwest Cape (NWC) transmitter (19.8 kHz) radio signals at satellite altitude and the displacement of the electric field’s peak center. Our analysis is based on the nightly China Seismo-Electromagnetic Satellite (CSES) data from 2019 to 2021. The results reveal the following: (1) There is no significant seasonal variation in the electric field strength within a small area (2.5° radius) around the NWC transmitter. However, a clear seasonal variation in the electric field strength is observed within a larger area (15° radius), with higher strength during winter compared with summer. (2) The power spectral density of the electric field remains constant within the peak central area (approximately 1~2° radius), but it decays with distance outside this region, showing a north–south asymmetry. Moreover, the decay rate of the radiation electric field is slower in the northern direction than in the southern direction. (3) The center of the electric field moves northward from summer to winter and southward from winter to summer. (4) In winter, VLF waves radiated by the NWC transmitter may predominantly propagate by being ducted toward the conjugate hemisphere. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

20 pages, 15187 KiB  
Article
Study on VLF Electric Field Anomalies Caused by Seismic Activity on the Western Coast of the Pacific Rim
by Zhong Li, Zhaoyang Chen, Jianping Huang, Xingsu Li, Ying Han, Xuming Yang and Zongyu Li
Atmosphere 2023, 14(11), 1676; https://doi.org/10.3390/atmos14111676 - 13 Nov 2023
Cited by 2 | Viewed by 1880
Abstract
In order to explore the correlation between earthquakes and ionospheric very low-frequency (VLF) electric field disturbances, this article uses VLF data observed by the China Earthquake Electromagnetic Satellite (CSES) to analyze very low-frequency signals before and after earthquakes from January 2019 to March [...] Read more.
In order to explore the correlation between earthquakes and ionospheric very low-frequency (VLF) electric field disturbances, this article uses VLF data observed by the China Earthquake Electromagnetic Satellite (CSES) to analyze very low-frequency signals before and after earthquakes from January 2019 to March 2023 in terms of the amplitude and signal-to-noise ratio of electric field power spectrum disturbances. Taking 73 earthquakes with a magnitude of 6.0 or higher occurring in the Circum-Pacific seismic belt as an example, comprehensive research on the VLF electric field disturbance phenomenon caused by strong earthquakes is conducted, considering both the earthquake location and source mechanism. The research results indicate the following: (1) there is a strong correlation between earthquakes with a magnitude of 6.0 or above and abnormal disturbances in the VLF electric field, which often occur within 20 days before the earthquake and within 800 km from the epicenter. (2) From the perspective of earthquake-prone areas, the VLF electric field anomalies observed before earthquakes in the Ryukyu Islands of the Taiwan region exhibit small and concentrated field fluctuations, while the Taiwan Philippines region exhibits larger field fluctuations and more dispersed fluctuations. The discovery of this correlation between seismic ionospheric phenomena and seismic activity provides a new and effective approach to earthquake monitoring, which can be used for earthquake prediction, early warning, and disaster prevention and reduction work. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

Back to TopTop