Climate Change, Air Pollution and Human Health: Past, Present and Future

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Quality and Health".

Deadline for manuscript submissions: 14 February 2025 | Viewed by 4069

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
2. Health Research Institute, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
Interests: climate change; air pollution; non-inflectional diseases; biometeorology; effects of the geomagnetic field

E-Mail Website
Guest Editor
Faculty of Natural Sciences, Department of Environmental Sciences, Vytautas Magnus University, LT-44191 Kaunas, Lithuania
Interests: biostatistics; associations between space weather and human health; effects of weather and air pollution on human health; environment; epidemiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Climate change and air pollution are closely interconnected environmental issues that have significant implications for human health. The sources and impacts of air pollution contribute to climate change, and both phenomena can have direct and indirect effects on the well-being of individuals and communities.

Vehicle emissions contribute to the release of pollutants, including carbon monoxide, nitrogen oxides, and particulate matter. Factories and power plants release pollutants such as sulfur dioxide, particulate matter, and volatile organic compounds. Coal, oil, and natural gas combustion release pollutants, including greenhouse gases such as carbon dioxide (CO2).

Inhalation of pollutants can lead to respiratory problems and aggravating conditions such as asthma and bronchitis, and long-term exposure is linked to heart disease and strokes. Certain air pollutants, such as benzene and formaldehyde, are carcinogenic.

The effects of climate change, such as heatwaves, can pose health risks, especially for vulnerable populations. Increased frequency and intensity of storms, floods, and droughts can affect health infrastructure and lead to injuries and diseases. Changes in climate patterns can impact the distribution of disease-carrying vectors, such as mosquitoes and ticks.

This Special Issue aims to showcase novel results on the direct and indirect associations between climate change, air pollution, and various aspects of human health.

Dr. Vidmantas Vaičiulis
Prof. Dr. Jonė Venclovienė
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • air pollution
  • climate change
  • heatwaves
  • coldwaves
  • human health
  • non-communicable diseases
  • infectious diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 8370 KiB  
Article
Ozone Induces Oxidative Stress and Inflammation in Nasal Mucosa of Rats
by Yu Zhan, Lufang Tian, Ruxin Zhang, Shaoqing Yu and Na Sun
Atmosphere 2024, 15(10), 1148; https://doi.org/10.3390/atmos15101148 - 25 Sep 2024
Viewed by 488
Abstract
Background: The development of the global economy has led to changes in air pollution patterns. The haze phenomenon characterized by high concentrations of particulate matter 2.5 (PM2.5) has changed to complex pollution, and photochemical pollution characterized by ozone (O3) has [...] Read more.
Background: The development of the global economy has led to changes in air pollution patterns. The haze phenomenon characterized by high concentrations of particulate matter 2.5 (PM2.5) has changed to complex pollution, and photochemical pollution characterized by ozone (O3) has become increasingly prominent. Ozone pollution and its impact on human health has become an important topic that needs to be studied urgently. Objective: To investigate the effects of ozone on oxidative stress and inflammation in the nasal mucosa of a rat model. Methods: Thirty-two healthy female Sprague–Dawley rats, eight in each group, were divided into four groups using the randomized numeric table method: normal control group (NC group), normal rats with a low level of ozone inhalation exposure (NEL group, 0.5 ppm), medium ozone inhalation exposure (NEM group, 1 ppm), and high ozone inhalation exposure (NEH group, 2 ppm). The ozone inhalation exposure groups were placed in the ozone inhalation exposure system and exposed to different concentrations of ozone for 2 h each day for 6 weeks. Nasal secretion was measured, and nasal lavage and nasal mucosa were collected. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were measured by colorimetric assay, and the nasal mucosa was analyzed by Western blot. Western blot (WB) was used to detect the expression of NF-κB p65 nuclear protein in nasal mucosa. The mRNA expression of NF-κB target genes IL-6 and IL-8 and tumor necrosis factor-α (TNF-α) was detected by real-time quantitative PCR (qRT-PCR), and the protein content of pro-inflammatory factors IL-6, IL-8, and TNF-α was detected by ELISA in serum and nasal lavage fluid. The nasal mucosa of rats was stained with hematoxylin-eosin (HE) to observe the pathological changes in the nasal mucosa. The data were analyzed by SPSS 20.0 software. Results: The amount of nasal secretion increased significantly in all groups after ozone exposure compared with that in the NC group. The MDA content of the nasal mucosa was significantly increased in the ozone-exposed group compared with the NC group, and the activity levels of SOD and GSH-Px in the nasal mucosa were lower in the ozone-exposed group than in the NC group. The mRNA expression of IL-6, IL-8, and TNF-α in the nasal mucosa of the ozone-exposed group was elevated, and the protein content of TNF-α, IL-6, and IL-8 in the nasal lavage fluid was elevated, and the content increased with the increase in ozone concentration. The expression of NF-κB p65 intracellular protein in the nasal mucosa of each ozone-exposed group was higher than that of the normal group, and the content increased with the increase in ozone concentration. Conclusions: Ozone inhalation exposure promotes oxidative stress and the release of inflammatory factors TNF-α, IL-6, and IL-8, leading to pathological damage of the nasal mucosa, the degree of which increases with increasing concentration. This pathological process may be related to the activation of the transcription factor NF-κB by ozone in the nasal mucosa of rats, which increases the expression of its target genes. Full article
Show Figures

Figure 1

17 pages, 7021 KiB  
Article
Traffic-Related Air Pollution and Childhood Asthma—Are the Risks Appropriately Mitigated in Australia?
by Clare Walter, Peter D. Sly, Brian W. Head, Diane Keogh and Nina Lansbury
Atmosphere 2024, 15(7), 842; https://doi.org/10.3390/atmos15070842 - 17 Jul 2024
Viewed by 1600
Abstract
Childhood asthma is a major health issue in Australia, and traffic emissions play a causative role. Two urban planning policies that impact children’s exposure to traffic emissions are considered in terms of the potential health risks to children in a Melbourne suburb with [...] Read more.
Childhood asthma is a major health issue in Australia, and traffic emissions play a causative role. Two urban planning policies that impact children’s exposure to traffic emissions are considered in terms of the potential health risks to children in a Melbourne suburb with high truck volumes and hospital attendances for childhood asthma. Firstly, the health impact assessment component of the state planning approval of a major road project, and secondly, local government placement of childcare centres and schools in relation to freight routes. Three sources of air quality monitoring data were examined: (i) a Victorian EPA reference site; (ii) a site with planning approval for development into a childcare centre; and (iii) five sites within the boundary of the West Gate Tunnel Project, an AUD 10 billion road and tunnel project. The Australian Urban Research Infrastructure Network data was utilised to assess distances of childcare centres and schools from major truck routes. A range of cconcentration–response functions for childhood asthma (0–18 years) from international systematic meta-analyses and a smaller Australian cross-sectional study were applied to comparative elevations in fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations between the EPA reference monitor (used for project risk assessment) and local roadside data. It was found that comparative elevations in NO2 concentrations were associated with the following risk increases: developing asthma 13%, active asthma 12%, and lifetime asthma 9%. Overall, 41% of childcare centres (n = 51) and 36% of schools (n = 22) were ≤150 m to a high-density truck route. Truck emissions likely make a substantial contribution to childhood asthma outcomes in the project area. This study exemplifies how current practices may not be commensurate with guiding policy objectives of harm minimisation and equitable protection. Full article
Show Figures

Figure 1

Review

Jump to: Research

10 pages, 2199 KiB  
Review
Climate Change, Air Pollution, and Human Health in the Kruger to Canyons Biosphere Region, South Africa, and Amazonas, Brazil: A Narrative Review
by Monika dos Santos
Atmosphere 2024, 15(5), 562; https://doi.org/10.3390/atmos15050562 - 30 Apr 2024
Viewed by 1399
Abstract
There is a 50% possibility that global temperatures will have risen by more than 5 °C by the year 2100. As demands on Earth’s systems grow more unsustainable, human security is clearly at stake. This narrative review provides an overview and synthesis of [...] Read more.
There is a 50% possibility that global temperatures will have risen by more than 5 °C by the year 2100. As demands on Earth’s systems grow more unsustainable, human security is clearly at stake. This narrative review provides an overview and synthesis of findings in relation to climate change, air pollution, and human health within the Global South context, focusing on case study geographic locations in South Africa and Brazil. Two case study regions—the Kruger to Canyons Biosphere region of South Africa and the Amazon region of Brazil—were the subjects of PubMed literature searches. Technical reports, policy briefs, and grey literature were also narratively synthesized. The burning of wood for fuel, as witnessed in Agincourt, and forest fires, such as those seen in the Amazon rainforest, release air pollutants such as methane and black carbon, which are strong short-lived climate pollutants (SLCPs) which fuel climate change and adversely affect human health. SLCPs have a brief lifetime in the atmosphere, but they frequently have a far larger potential for global warming than carbon dioxide (CO2). Most air pollution in geographic case study areas, that are home to human settlements, is due to the burning of wood and other biomasses that are pollutants. These areas are seen to be important for climate and health responses, and if constructive action is taken to switch to other modes of electricity generation (such as solar power) and the prevention of deforestation, the worst of the impacts may still be mitigated in these regions. Authorities should also establish a monitoring strategy for air quality, as well as enforce air quality regulations that safeguard public health. Full article
Show Figures

Figure 1

Back to TopTop