Advanced Carbon-Based Materials for Next-Generation Batteries and Supercapacitors

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Materials and Interfaces: Anode, Cathode, Separators and Electrolytes or Others".

Deadline for manuscript submissions: 10 August 2025 | Viewed by 5684

Special Issue Editors

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
Interests: green synthesis; MOF; carbon materials; secondary batteries; nanomaterials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
Interests: supercapacitors; hybrid supercapacitors; zinc ion batteries; energy-storage materials

Special Issue Information

Dear Colleagues,

Energy is the inexhaustible driving force and material foundation for the development of human civilization. With the development of society and technology, the excessive consumption of energy has brought about resource and environmental issues. In recent years, the new-energy electric vehicle industry has been developing at great speed, which has led to the rapid development of electrochemical energy-storage technology. Batteries and supercapacitors offer high energy density and high power density, and have a promising future in the field of energy storage. Carbon-based materials have always been at the forefront of this field due to their unique advantages of low density, chemical stability, good processability, and diverse morphologies. This Special Issue will approach the rational design of carbon-based composite materials and their latest uses in rechargeable batteries and supercapacitors, exploring manufacturing processes, the materials used (carbon nanotubes, graphene, biomass carbon, MOF-derived carbon, etc.), microstructural design (porous structures, core/shell structures, hollow structures, three-dimensional structures, etc.), and component optimization, as well as reporting their practical applications in electrochemical energy storage and studying their energy-storage mechanisms in detail. We aim to contribute toward creating a new generation of functional carbon-based materials for rechargeable batteries and supercapacitors.

We hope that this Special Issue can play a certain guiding role in the research into functional carbon-based materials and composites and inspire broader research, thereby aiding significant progress in this field.

Topics of interest include, but are not limited to, the following:

  • Synthesis of advanced carbon materials;
  • Physical, chemical, and electrochemical characterization of carbon nanomaterials;
  • Optimal sizing and design of carbon materials;
  • Lifetime estimation of batteries and supercapacitors;
  • New materials and advanced manufacturing methods in battery and supercapacitor production;
  • Carbon composite materials as an active material for supercapacitors;
  • Carbon-based electrodes for rechargeable batteries.

Dr. Binghui Xu
Dr. Haichao Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • batteries
  • supercapacitors
  • carbon-based materials
  • carbon composite materials
  • microstructure design
  • composition optimization
  • energy-storage mechanism
  • electrolytes
  • energy densities

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 8784 KiB  
Article
Composites Based on Poly(ortho-toluidine) and WS2 Sheets for Applications in the Supercapacitor Field
by Teodora Burlanescu, Ion Smaranda, Andreea Androne, Cristina Stefania Florica, Madalina Cercel, Mirela Paraschiv, Adelina Udrescu, Adam Lőrinczi, Petru Palade, Andrei Galatanu, Catalin Negrila, Elena Matei, Monica Dinescu, Radu Cercel and Mihaela Baibarac
Batteries 2025, 11(1), 37; https://doi.org/10.3390/batteries11010037 - 20 Jan 2025
Viewed by 462
Abstract
In this work, three methods for the synthesis of composites based on poly(ortho-toluidine) (POT) and WS2 are reported: (a) the solid-state interaction (SSI) of POT with WS2 nanoparticles (NPs); (b) the in situ chemical polymerization (ICP) of ortho-toluidine (OT); and (c) [...] Read more.
In this work, three methods for the synthesis of composites based on poly(ortho-toluidine) (POT) and WS2 are reported: (a) the solid-state interaction (SSI) of POT with WS2 nanoparticles (NPs); (b) the in situ chemical polymerization (ICP) of ortho-toluidine (OT); and (c) the electrochemical polymerization (ECP) of OT. The preparation of WS2 sheets was performed by the ball milling of the WS2 NPs followed by ultrasonication in the solvent N,N’-dimethyl formamide. During the synthesis of the POT/WS2 composites by SSI and ICP, an additional exfoliation of the WS2 NPs was reported. In this work, we demonstrated the following: (a) the ICP method leads to POT/WS2 composites, which contain repeating units of POT in the leucoemeraldine salt (LS) state, while (b) the ECP method leads to POT/WS2 composites, which contain repeating units of POT in the emeraldine salt (ES) state. Capacitances equal to 123.5, 465.76, and 751.6 mF cm−2 in the cases of POT-ES/WS2 composites, synthesized by SSI, ICP, and ECP, respectively, were reported. Full article
Show Figures

Figure 1

14 pages, 7065 KiB  
Article
Sustainable Synthesis of a Carbon-Supported Magnetite Nanocomposite Anode Material for Lithium-Ion Batteries
by Hui Zeng, Jiahui Li, Haoyu Yin, Ruixin Jia, Longbiao Yu, Hongliang Li and Binghui Xu
Batteries 2024, 10(10), 357; https://doi.org/10.3390/batteries10100357 - 11 Oct 2024
Viewed by 1334
Abstract
Transition metal oxide magnetite (Fe3O4) is recognized as a potential anode material for lithium-ion batteries owing to its high theoretical specific capacity, modest voltage output, and eco-friendly character. It is a challenging task to engineer high-performance composite materials by [...] Read more.
Transition metal oxide magnetite (Fe3O4) is recognized as a potential anode material for lithium-ion batteries owing to its high theoretical specific capacity, modest voltage output, and eco-friendly character. It is a challenging task to engineer high-performance composite materials by effectively dispersing Fe3O4 crystals with limited sizes in a well-designed supporting framework following sustainable approaches. In this work, the naturally abundant plant products sodium lignosulfonate (Lig) and sodium cellulose (CMC) were selected to coprecipitate with Fe3+ ions under mild hydrothermal conditions. The Fe-Lig/CMC intermediate sediment with an optimized microstructure can be directly converted to the Lig/CMC-derived carbon matrix-supported Fe3O4 nanocomposite sample (Fe3O4@LigC/CC). Compared with the controlled Fe3O4@LigC material, the Fe3O4@LigC/CC nanocomposite provides superior electrochemical performance in the anode, which has inspiring specific capacities of 820.6 mAh g−1 after 100 cycles under a current rate of 100 mA·g−1 and 750.5 mAh g−1 after 250 cycles, as well as more exciting rate capabilities. The biomimetic sample design and synthesis protocol closely follow the criteria of green chemistry and can be further developed in wider scenarios. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 5058 KiB  
Review
Research Progress and Challenges of Carbon/MXene Composites for Supercapacitors
by Li Sun, Yu Dong, Hangyu Li, Hanqi Meng, Jianfei Liu, Qigao Cao and Chunxu Pan
Batteries 2024, 10(11), 395; https://doi.org/10.3390/batteries10110395 - 7 Nov 2024
Viewed by 1262
Abstract
Carbon materials/MXenes composite materials have gained widespread attention in the field of supercapacitors due to their excellent electrochemical performance. Carbon materials are considered ideal electrode materials for supercapacitors due to their high specific surface area, good conductivity, and outstanding electrochemical stability. MXenes, as [...] Read more.
Carbon materials/MXenes composite materials have gained widespread attention in the field of supercapacitors due to their excellent electrochemical performance. Carbon materials are considered ideal electrode materials for supercapacitors due to their high specific surface area, good conductivity, and outstanding electrochemical stability. MXenes, as a novel two-dimensional material, exhibit prominent conductivity, mechanical properties, and ionic conductivity, thereby showing great potential for applications in energy storage devices. The combination of carbon materials and MXenes is expected to fully leverage the advantages of both, optimizing electrode conductivity, enhancing the energy density and power density, and improving the charge–discharge performance. This article reviews the key research progress of carbon/MXenes composite materials in supercapacitors in recent years, including their synthesis methods, structural tuning, and improvements in their electrochemical performance. Finally, the article looks forward to future research directions and proposes potential strategies to enhance the overall performance of the composite materials and achieve large-scale applications. By addressing the existing challenges, carbon/MXenes composite materials are anticipated to achieve higher energy and power outputs for the supercapacitor field in the future, providing strong support for the development of new energy storage technologies such as electric vehicles and wearable devices. Full article
Show Figures

Figure 1

23 pages, 13548 KiB  
Review
Synthesis Methods of Si/C Composite Materials for Lithium-Ion Batteries
by Inkyu Park, Hanbyeol Lee and Oh B. Chae
Batteries 2024, 10(11), 381; https://doi.org/10.3390/batteries10110381 - 28 Oct 2024
Cited by 2 | Viewed by 2023
Abstract
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, [...] Read more.
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, which leads to mechanical degradation and loss of electrical contact. This issue contributes to poor cycling stability and hinders their commercial viability, and various silicon–carbon composite fabrication methods have been explored to mitigate these challenges. This review covers key techniques, including ball milling, spray drying, pyrolysis, chemical vapor deposition (CVD), and mechanofusion. Each method has unique benefits; ball milling and spray drying are effective for creating homogeneous composites, whereas pyrolysis and CVD offer high-quality coatings that enhance the mechanical stability of silicon anodes. Mechanofusion has been highlighted for its ability to integrate silicon with carbon materials, showing the potential for further optimization. In light of these advancements, future research should focus on refining these techniques to enhance the stability and performance of Si-based anodes. The optimization of the compounding process has the potential to enhance the performance of silicon anodes by addressing the significant volume change and low conductivity, while simultaneously addressing cost-related concerns. Full article
Show Figures

Figure 1

Back to TopTop