Biomaterial Scaffolds for Tissue Engineering

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: closed (25 June 2024) | Viewed by 2721

Special Issue Editors

Associate Research Professor, Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
Interests: cell-biomaterial interaction; extracellular matrix/synthetic hybrid bioactive scaffolds; stem cell technology; infection resistant biomaterials; wound healing

E-Mail Website
Guest Editor
Professor, Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
Interests: novel biomaterial scaffolds; bone tissue engineering; musculoskeletal disease; collagen biomaterials and modeling; muscle tissue engineering

Special Issue Information

Dear Colleagues,

Biomaterials play a crucial role in the field of tissue engineering with widespread applications. Both naturally occurring biological materials and synthetic biocompatible materials have been harnessed as carriers for cells or signaling molecules. They also provide structure as scaffolds to support the growth and differentiation of endogenous or exogenous cells. The focus of this special issue is to present recent advancements and innovative strategies that leverage the properties of biomaterials to facilitate and enhance tissue engineering.

Dr. Yong Mao
Dr. Joseph W. Freeman
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tissue engineering
  • biomaterials
  • scaffolds
  • extracellular matrix
  • tissue matrix
  • tissue repair
  • hydrogel
  • biocompatible polymers
  • tissue regeneration
  • biodegradability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3082 KiB  
Article
Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile
by Kariman A. Shama, Zachary Franklin Greenberg, Chadine Tammame, Mei He and Brittany L. Taylor
Bioengineering 2024, 11(10), 1019; https://doi.org/10.3390/bioengineering11101019 - 12 Oct 2024
Viewed by 994
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent [...] Read more.
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon’s fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon’s microenvironment. Full article
(This article belongs to the Special Issue Biomaterial Scaffolds for Tissue Engineering)
Show Figures

Figure 1

13 pages, 4398 KiB  
Article
Fabrication and Evaluation of PCL/PLGA/β-TCP Spiral-Structured Scaffolds for Bone Tissue Engineering
by Weiwei Wang, Xiaqing Zhou, Haoyu Wang, Gan Zhou and Xiaojun Yu
Bioengineering 2024, 11(7), 732; https://doi.org/10.3390/bioengineering11070732 - 19 Jul 2024
Viewed by 1272
Abstract
Natural bone is a complex material that has been carefully designed. To prepare a successful bone substitute, two challenging conditions need to be met: biocompatible and bioactive materials for cell proliferation and differentiation, and appropriate mechanical stability after implantation. Therefore, a hybrid Poly [...] Read more.
Natural bone is a complex material that has been carefully designed. To prepare a successful bone substitute, two challenging conditions need to be met: biocompatible and bioactive materials for cell proliferation and differentiation, and appropriate mechanical stability after implantation. Therefore, a hybrid Poly ε-caprolactone/Poly(lactic-co-glycolide)/β-tricalcium phosphate (PCL/PLGA/β-TCP) scaffold has been introduced as a suitable composition that satisfies the above two conditions. The blended PCL and PLGA can improve the scaffold’s mechanical properties and biocompatibility compared to single PCL or PLGA scaffolds. In addition, the incorporated β-TCP increases the mechanical strength and osteogenic potential of PCL/PLGA scaffolds, while the polymer improves the mechanical stability of ceramic scaffolds. The PCL/PLGA/β-TCP scaffold is designed using spiral structures to provide a much better transport system through the gaps between spiral walls than conventional cylindrical scaffolds. Human fetal osteoblasts (hFOBs) were cultured on spiral PCL/PLGA/β-TCP (PPBS), cylindrical PCL/PLGA/β-TCP (PPBC), and cylindrical PCL scaffolds for a total of 28 days. The cell proliferation, viability, and osteogenic differentiation capabilities were analyzed. Compared with PCL and PPBC scaffolds, the PPBS scaffold exhibits great biocompatibility and potential to stimulate cell proliferation and differentiation and, therefore, can serve as a bone substitute for bone tissue regeneration. Full article
(This article belongs to the Special Issue Biomaterial Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop