Skeletal Muscle Homeostasis and Regeneration

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: 15 May 2025 | Viewed by 12924

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biochemistry, University of Szeged, Szeged, Hungary
Interests: skeletal muscle regeneration and adaptation

Special Issue Information

Dear Colleagues,

Skeletal muscle is one of the most adaptable tissues. This adaptation serves to maintain homeostasis. Skeletal muscle is not homogenous, so its adaptation can take place in different ways. There are fibers that more easily change their gene expression, metabolism, and consequently their entire function, including contractile properties. Other fibers are less able to do this; their so-called phenotype seems to be more permanent, and it is particularly interesting that the renewal of such fibers is also more difficult with the help of tissue stem cells. It seems that homeostasis can be maintained in each muscle type through different regeneration. The main phases of regeneration, inflammation that removes tissue debris, myoblast division, myotube formation, innervation, and fiber differentiation, can all be different for different muscle types. Furthermore, since each muscle has a different fiber composition, the maintenance of homeostasis and regeneration can also show significant differences. This being the case, the range of questions that can be raised is therefore wide, and many in vitro models may be suitable for answering them. In vivo approximations, although more difficult due to their experimental limitations, remain indispensable in basic and translational research.

In this Special Issue, we expect articles dealing with the homeostasis and regeneration of skeletal muscle. Since the topic is both broad and specialized, partially overlapping works are also welcome.

Prof. Dr. Ernö Zádor
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • skeletal muscle
  • homeostasis
  • regeneration
  • satellite cells
  • fiber type

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5811 KiB  
Article
Modulation of Carnitine Palmitoyl Transferase 1b Expression and Activity in Muscle Pathophysiology in Osteoarthritis and Osteoporosis
by Chiara Greggi, Manuela Montanaro, Maria Giovanna Scioli, Martina Puzzuoli, Sonia Gino Grillo, Manuel Scimeca, Alessandro Mauriello, Augusto Orlandi, Elena Gasbarra, Riccardo Iundusi, Sabina Pucci and Umberto Tarantino
Biomolecules 2024, 14(10), 1289; https://doi.org/10.3390/biom14101289 - 12 Oct 2024
Viewed by 1200
Abstract
In the pathophysiology of osteoarthritis and osteoporosis, articular cartilage and bone represent the target tissues, respectively, but muscle is also involved. Since many changes in energy metabolism occur in muscle with aging, the aim of the present work was to investigate the involvement [...] Read more.
In the pathophysiology of osteoarthritis and osteoporosis, articular cartilage and bone represent the target tissues, respectively, but muscle is also involved. Since many changes in energy metabolism occur in muscle with aging, the aim of the present work was to investigate the involvement of carnitine palmitoyl transferase 1b (Cpt1b) in the muscle pathophysiology of the two diseases. Healthy subjects (CTR, n = 5), osteoarthritic (OA, n = 10), and osteoporotic (OP, n = 10) patients were enrolled. Gene expression analysis conducted on muscle and myoblasts showed up-regulation of CPT1B in OA patients; this result was confirmed by immunohistochemical and immunofluorescence analyses and enzyme activity assay, which showed increased Cpt1b activity in OA muscle. In addition, CPT1B expression resulted down-regulated in cultured OP myoblasts. Given the potential involvement of Cpt1b in the modulation of oxidative stress, we investigated ROS levels, which were found to be lower in OA myoblasts, and gene expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (Nox4), which resulted up-regulated in OA cells. Finally, the immunofluorescence of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3) showed a decreased expression in OP myoblasts, with respect to CTR and OA. Contextually, through an ultrastructural analysis conducted by Transmission Electron Microscopy (TEM), the presence of aberrant mitochondria was observed in OP muscle. This study highlights the potential role of Cpt1b in the regulation of muscle homeostasis in both osteoarthritis and osteoporosis, allowing for the expansion of the current knowledge of what are the molecular biological pathways involved in the regulation of muscle physiology in both diseases. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Graphical abstract

16 pages, 9084 KiB  
Article
Chemogenetic Excitation of Ventromedial Hypothalamic Steroidogenic Factor 1 (SF1) Neurons Increases Muscle Thermogenesis in Mice
by Christina A. Watts, Jordan Smith, Roman Giacomino, Dinah Walter, Guensu Jang, Aalia Malik, Nicholas Harvey and Colleen M. Novak
Biomolecules 2024, 14(7), 821; https://doi.org/10.3390/biom14070821 - 9 Jul 2024
Viewed by 1056
Abstract
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence [...] Read more.
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

17 pages, 2446 KiB  
Article
The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways
by Carter H Reed, Anna C. Tystahl, Hyeyoon Eo, Trevor J. Buhr, Ella E. Bauer, Ji Heun Lee, Peter J. Clark and Rudy J. Valentine
Biomolecules 2024, 14(5), 527; https://doi.org/10.3390/biom14050527 - 28 Apr 2024
Viewed by 2028
Abstract
Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how [...] Read more.
Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2–4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

17 pages, 3733 KiB  
Article
Mitochondrial Transplantation’s Role in Rodent Skeletal Muscle Bioenergetics: Recharging the Engine of Aging
by Tasnim Arroum, Gerald A. Hish, Kyle J. Burghardt, James D. McCully, Maik Hüttemann and Moh H. Malek
Biomolecules 2024, 14(4), 493; https://doi.org/10.3390/biom14040493 - 18 Apr 2024
Cited by 2 | Viewed by 3138
Abstract
Background: Mitochondria are the ‘powerhouses of cells’ and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level [...] Read more.
Background: Mitochondria are the ‘powerhouses of cells’ and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level of mobility. Moreover, non-exercise alternatives (i.e., nutraceuticals or pharmacological agents) to improve skeletal muscle bioenergetics require time to be effective in the target tissue and have another limitation in that they act systemically and not locally where needed. Mitochondrial transplantation represents a novel directed therapy designed to enhance energy production of tissues impacted by defective mitochondria. To date, no studies have used mitochondrial transplantation as an intervention to attenuate aging-induced skeletal muscle mitochondrial dysfunction. The purpose of this investigation, therefore, was to determine whether mitochondrial transplantation can enhance skeletal muscle bioenergetics in an aging rodent model. We hypothesized that mitochondrial transplantation would result in sustained skeletal muscle bioenergetics leading to improved functional capacity. Methods: Fifteen female mice (24 months old) were randomized into two groups (placebo or mitochondrial transplantation). Isolated mitochondria from a donor mouse of the same sex and age were transplanted into the hindlimb muscles of recipient mice (quadriceps femoris, tibialis anterior, and gastrocnemius complex). Results: The results indicated significant increases (ranging between ~36% and ~65%) in basal cytochrome c oxidase and citrate synthase activity as well as ATP levels in mice receiving mitochondrial transplantation relative to the placebo. Moreover, there were significant increases (approx. two-fold) in protein expression of mitochondrial markers in both glycolytic and oxidative muscles. These enhancements in the muscle translated to significant improvements in exercise tolerance. Conclusions: This study provides initial evidence showing how mitochondrial transplantation can promote skeletal muscle bioenergetics in an aging rodent model. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1198 KiB  
Review
Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration
by Katarzyna Budzynska, Maria Siemionow, Katarzyna Stawarz, Lucile Chambily and Krzysztof Siemionow
Biomolecules 2024, 14(5), 575; https://doi.org/10.3390/biom14050575 - 13 May 2024
Cited by 1 | Viewed by 2812
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing [...] Read more.
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic–intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

14 pages, 877 KiB  
Review
Characterization of Skeletal Muscle Regeneration Revealed a Novel Growth Network Induced by Molecular Acupuncture-like Transfection
by Ernő Zádor
Biomolecules 2024, 14(3), 363; https://doi.org/10.3390/biom14030363 - 19 Mar 2024
Viewed by 1888
Abstract
The low efficiency of in vivo transfection of a few fibres revealed a novel tissue network that temporally amplified growth stimulation in the entire regenerating rat soleus muscle. This acupuncture-like effect was demonstrated when the fibres began to grow after complete fibre degradation, [...] Read more.
The low efficiency of in vivo transfection of a few fibres revealed a novel tissue network that temporally amplified growth stimulation in the entire regenerating rat soleus muscle. This acupuncture-like effect was demonstrated when the fibres began to grow after complete fibre degradation, synchronous inflammation, myoblast and myotube formation. Neonatal sarcoplasmic/endoplasmic reticulum ATPase (SERCA1b) was first detected in this system. The neonatal, fast and slow SERCA isoforms displayed consequent changes with innervation and differentiation, recapitulating events in muscle development. In vivo transfection of myotubes with plasmids expressing dominant negative Ras or a calcineurin inhibitor peptide (Cain/cabin) proved that expression of the slow myosin heavy chain and the slow muscle type SERCA2a are differentially regulated. In vivo transfection of a few nuclei of myotubes with dnRas or SERCA1b shRNA stimulated fibre size growth in the whole regenerating muscle but only until the full size had been reached. Growth stimulation by Ras and SERCA1b antisense was abolished by co-transfection of Cain or with perimuscular injection of IL4 antibody. This revealed a novel signalling network resembling scale-free networks which, starting from transfected fibre myonuclei as “hubs”, can amplify growth stimulation uniformly in the entire regenerating muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

Back to TopTop