Biosensors Based on Isothermal Nucleic Acid Amplification Strategies

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Optical and Photonic Biosensors".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 4432

Special Issue Editors


E-Mail Website
Guest Editor
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
Interests: fluorescence biosensor; fiber optic biosensor; isothermal nucleic acid amplification; nanomaterials; public health; pathogenic bacteria; virus
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
Interests: photonic science; fiber optics; localized surface plasmonic resonance; cytosensor; laser
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on biosensors based on isothermal nucleic acid amplification strategies for food safety, environmental monitoring, and clinical diagnostic research. Isothermal nucleic acid amplification does not require expensive variable temperature equipment, can be performed under isothermal conditions or at room temperature, and is suitable for rapid, in situ analysis and point-of-care testing. To this end, the purpose of this Special Issue is to collect original papers and reviews to show the development of isothermal nucleic acid amplification strategy-based biosensors and their innovative applications in related fields, new challenges and development prospects.

Dr. Yongxin Li
Dr. Zewei Luo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • isothermal nucleic acid amplification
  • nanomaterials
  • aptamer
  • public health
  • environmental monitoring
  • clinic diagnosis
  • food safety

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 6079 KiB  
Article
A Finger-Actuated Sample-Dosing Capillary-Driven Microfluidic Device for Loop-Mediated Isothermal Amplification
by Xuan Le, Jianxiong Chan, James McMahon, Jessica A. Wisniewski, Anna Coldham, Tuncay Alan and Patrick Kwan
Biosensors 2024, 14(9), 410; https://doi.org/10.3390/bios14090410 - 23 Aug 2024
Viewed by 1201
Abstract
Loop-mediated isothermal amplification (LAMP) has attracted significant attention for rapid and accurate point-of-care diagnostics. However, integrating sample introduction, lysis, amplification, and detection steps into an easy-to-use, disposable system has so far been challenging. This has limited the uptake of the technique in practical [...] Read more.
Loop-mediated isothermal amplification (LAMP) has attracted significant attention for rapid and accurate point-of-care diagnostics. However, integrating sample introduction, lysis, amplification, and detection steps into an easy-to-use, disposable system has so far been challenging. This has limited the uptake of the technique in practical applications. In this study, we developed a colourimetric one-step LAMP assay that combines thermolysis and LAMP reaction, to detect the SARS-CoV-2 virus in nasopharyngeal swab samples from COVID-19-infected individuals. The limit of detection was 500 copies per reaction at 65 °C for 25 min in reaction tubes. Additionally, we developed a finger-operated capillary-driven microfluidic device with selective PVA coating. This finger-actuated microfluidic device could self-dose the required sample amount for the LAMP reaction and inhibit sample evaporation. Finally, we integrated the LAMP assay into the microfluidic device by short-term pre-storage of the LAMP master mix. Using this device, nasopharyngeal swab samples from COVID-19-infected individuals showed positive results at a reaction time of 35 min at 65 °C. This integrated device may be adapted to detect other RNA viruses of interest rapidly. Full article
(This article belongs to the Special Issue Biosensors Based on Isothermal Nucleic Acid Amplification Strategies)
Show Figures

Figure 1

13 pages, 3576 KiB  
Article
Low-Cost Arduino Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) for Sensitive Nucleic Acid Detection
by Bruno Dias Camargo, Mateus Cassaboni Stracke, Heloisa Bruna Soligo Sanchuki, Viviane Klassen de Oliveira, Hellen Cristina Ancelmo, Dayanne Mozaner Bordin, Fabricio Klerynton Marchini, Emilson Ribeiro Viana and Lucas Blanes
Biosensors 2024, 14(3), 128; https://doi.org/10.3390/bios14030128 - 29 Feb 2024
Cited by 3 | Viewed by 2167
Abstract
This work presents a low-cost transcription loop-mediated isothermal amplification (RT-LAMP) instrument for nucleic acid detection, employing an Arduino Nano microcontroller. The cooling system includes customized printed circuit boards (PCBs) that serve as electrical resistors and incorporate fans. An aluminum block is designed to [...] Read more.
This work presents a low-cost transcription loop-mediated isothermal amplification (RT-LAMP) instrument for nucleic acid detection, employing an Arduino Nano microcontroller. The cooling system includes customized printed circuit boards (PCBs) that serve as electrical resistors and incorporate fans. An aluminum block is designed to accommodate eight vials. The system also includes two PCB heaters—one for sample heating and the other for vial lid heating to prevent condensation. The color detection system comprises a TCS3200 color 8-sensor array coupled to one side of the aluminum heater body and a white 8-LED array coupled to the other side, controlled by two Multiplexer/Demultiplexer devices. LED light passes through the sample, reaching the color sensor and conveying color information crucial for detection. The top board is maintained at 110 ± 2 °C, while the bottom board is held at 65 ± 0.5 °C throughout the RT-LAMP assay. Validation tests successfully demonstrated the efficacy of the colorimetric RT-LAMP reactions using SARS-CoV-2 RNA amplification as a sample viability test, achieving 100% sensitivity and 97.3% specificity with 66 clinical samples. Our instrument offers a cost-effective (USD 100) solution with automated result interpretation and superior sensitivity compared to visual inspection. While the prototype was tested with SARS-CoV-2 RNA samples, its versatility extends to detecting other pathogens using alternative primers, showcasing its potential for broader applications in biosensing. Full article
(This article belongs to the Special Issue Biosensors Based on Isothermal Nucleic Acid Amplification Strategies)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 9106 KiB  
Review
Chemical Heating for Minimally Instrumented Point-of-Care (POC) Molecular Diagnostics
by Michael G. Mauk, Felix Ansah and Mohamed El-Tholoth
Biosensors 2024, 14(11), 554; https://doi.org/10.3390/bios14110554 - 13 Nov 2024
Viewed by 523
Abstract
The minimal instrumentation of portable medical diagnostic devices for point-of-care applications is facilitated by using chemical heating in place of temperature-regulated electrical heaters. The main applications are for isothermal nucleic acid amplification tests (NAATs) and other enzymatic assays that require elevated, controlled temperatures. [...] Read more.
The minimal instrumentation of portable medical diagnostic devices for point-of-care applications is facilitated by using chemical heating in place of temperature-regulated electrical heaters. The main applications are for isothermal nucleic acid amplification tests (NAATs) and other enzymatic assays that require elevated, controlled temperatures. In the most common implementation, heat is generated by the exothermic reaction of a metal (e.g., magnesium, calcium, or lithium) with water or air, buffered by a phase-change material that maintains a near-constant temperature to heat the assay reactions. The ability to incubate NAATs electricity-free and to further to detect amplification with minimal instrumentation opens the door for fully disposable, inexpensive molecular diagnostic devices that can be used for pathogen detection as needed in resource-limited areas and during natural disasters, wars, and civil disturbances when access to electricity may be interrupted. Several design approaches are reviewed, including more elaborate schemes for multiple stages of incubation at different temperatures. Full article
(This article belongs to the Special Issue Biosensors Based on Isothermal Nucleic Acid Amplification Strategies)
Show Figures

Figure 1

Back to TopTop