energies-logo

Journal Browser

Journal Browser

Advances in Hydrogen Energy IV

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A5: Hydrogen Energy".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 5036

Special Issue Editors


E-Mail Website
Guest Editor
Department of Energy Technology, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
Interests: energy systems modeling; fuel cells; hydrogen; methanol
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydrogen energy research and development has attracted growing attention as one of the key solutions for a clean future energy system. In order to reduce greenhouse gas emissions, national governments across the world are developing ambitious policies to support hydrogen technology, and an increasing level of funding has been allocated for projects of research, development, and demonstration of this technology. At the same time, the private sector is capitalizing on the opportunity with larger investments in hydrogen technology solutions.

While intense research activities have been dedicated to this field, several issues require further research prior to achieving a full commercialization of hydrogen technology solutions. This Special Issue seeks to contribute to disseminating the most recent advancements in the field with respect to both modeling and experimental analysis. The focus is placed on research covering all aspects of the hydrogen energy route, including fuel production, storage, transportation, and final usage. This also includes the development of hydrogen-based fuels, such as ammonia, alcohols, and methane.

We look forward to considering your submissions.

Dr. Samuel Simon Araya
Dr. Vincenzo Liso
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fuel cell materials and systems
  • electrolysis materials and systems
  • catalysis
  • hydrogen storage and transportation
  • hydrogen based electro-fuels (e.g., methanol, ammonia, enriched methane)
  • control and diagnostics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

31 pages, 7887 KiB  
Article
Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems
by Fabio Massaro, Maria Luisa Di Silvestre, Marco Ferraro, Francesco Montana, Eleonora Riva Sanseverino and Salvatore Ruffino
Energies 2024, 17(17), 4422; https://doi.org/10.3390/en17174422 - 3 Sep 2024
Viewed by 893
Abstract
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes, but it might also enable the development of hydrogen-based electricity storage systems made up of [...] Read more.
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes, but it might also enable the development of hydrogen-based electricity storage systems made up of electrolyzers, hydrogen storage systems, and generators (fuel cells or engines). The adoption of hydrogen-based technologies is strictly linked to the electrification of end uses and to multicarrier energy grids. This study introduces a generic method to integrate and optimize the sizing and operation phases of hydrogen-based power systems using an energy hub optimization model, which can manage and coordinate multiple energy carriers and equipment. Furthermore, the uncertainty related to renewables and final demands was carefully assessed. A case study on an urban microgrid with high hydrogen demand for mobility demonstrates the method’s applicability, showing how the multi-objective optimization of hydrogen-based power systems can reduce total costs, primary energy demand, and carbon equivalent emissions for both power grids and mobility down to −145%. Furthermore, the adoption of the uncertainty assessment can give additional benefits, allowing a downsizing of the equipment. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1965 KiB  
Review
Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields
by Michael Binns
Energies 2024, 17(19), 4897; https://doi.org/10.3390/en17194897 - 30 Sep 2024
Viewed by 862
Abstract
The electrolysis of water is one of the most promising ways of producing green hydrogen. This produces hydrogen using electricity and does not generate additional carbon dioxide like the more conventional reforming of fossil fuels. However, making electrolysis competitive with conventional methods for [...] Read more.
The electrolysis of water is one of the most promising ways of producing green hydrogen. This produces hydrogen using electricity and does not generate additional carbon dioxide like the more conventional reforming of fossil fuels. However, making electrolysis competitive with conventional methods for hydrogen production is a challenge because of the cost of electricity and because of inefficiencies and costs in electrolysis systems. Initially this review looks at the basic design of water electrolysis and asks where energy is lost. Then, a selection of the latest results in the area of magnetic field-enhanced water electrolysis are examined and discussed, in particular focusing on the empirical results of magnetic field-assisted electrolysis with the aim of comparing findings and identifying limitations of current studies such that recommendations can be made for advanced design of hydrogen producing electrolysis systems. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

22 pages, 4449 KiB  
Review
Ejectors in Hydrogen Recirculation for PEMFC-Based Systems: A Comprehensive Review of Design, Operation, and Numerical Simulations
by Masoud Arabbeiki, Mohsen Mansourkiaei, Domenico Ferrero and Massimo Santarelli
Energies 2024, 17(19), 4815; https://doi.org/10.3390/en17194815 - 26 Sep 2024
Viewed by 754
Abstract
Fuel cell systems often utilize a hydrogen recirculation system to redirect and transport surplus hydrogen back to the anode, which enhances fuel consumption and boosts the efficiency of the fuel cell. Hydrogen recirculation pumps and ejectors are the most investigated systems. Ejectors are [...] Read more.
Fuel cell systems often utilize a hydrogen recirculation system to redirect and transport surplus hydrogen back to the anode, which enhances fuel consumption and boosts the efficiency of the fuel cell. Hydrogen recirculation pumps and ejectors are the most investigated systems. Ejectors are gaining recognition as an essential device in fuel cell systems. However, their application in hydrogen recirculation systems is often limited by a narrow operational range. Therefore, it is advantageous to compile the present condition of the study on various ejector shapes as well as configurations that can accommodate a broader operational range, along with the numerical simulations employed in these studies. This paper begins by examining the structure and operation of ejectors. It then compares and analyzes the latest advancements in research on ejector-based hydrogen recirculation systems with extended operating ranges and reviews the details of numerical simulations of ejectors, which are crucial for the development of innovative and efficient ejectors. This study provides key insights and recommendations for integrating hydrogen ejectors into the hydrogen cycle system of fuel cell engines. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

38 pages, 2312 KiB  
Review
Hydrogen Purification Technologies in the Context of Its Utilization
by Anna Król, Monika Gajec, Jadwiga Holewa-Rataj, Ewa Kukulska-Zając and Mateusz Rataj
Energies 2024, 17(15), 3794; https://doi.org/10.3390/en17153794 - 1 Aug 2024
Viewed by 2199
Abstract
This publication explores current and prospective methods for hydrogen production and purification, with a strong emphasis on membrane-based technologies for purification and separation. This focus is justified by the ongoing shift towards renewable energy sources (RESs) in electricity generation, necessitating strategic changes to [...] Read more.
This publication explores current and prospective methods for hydrogen production and purification, with a strong emphasis on membrane-based technologies for purification and separation. This focus is justified by the ongoing shift towards renewable energy sources (RESs) in electricity generation, necessitating strategic changes to increase hydrogen utilization, particularly in the automotive, heavy road, and rail sectors, by 2025–2030. The adoption of hydrogen from RESs in the construction, energy, and industrial sectors (e.g., for process heat or fertilizer production) is also under consideration, driving the need for innovative production, separation, and purification methods. Historically, industrial-scale hydrogen has been predominantly derived from fossil fuels, but renewable sources such as electrolysis, biological, and thermal processes now offer alternatives with varying production efficiencies (0.06–80%) and gas compositions. Therefore, selecting appropriate separation and purification methods is critical based on specific usage requirements and the gas composition. Industrial-scale hydrogen purification commonly employs pressure swing adsorption (PSA) technologies, capable of achieving up to 99.99% purity. Cryogenic distillation is suitable for applications needing up to 95% purity. Membrane technologies, including polymer, metallic, and electrolytic membranes, have traditionally been limited to moderate volumes of pure gas production but are crucial for hydrogen purification and separation. This publication critically evaluates the potential of membrane technology for hydrogen separation, particularly in response to the anticipated rise in demand for RES-derived hydrogen, including from renewable feedstocks. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

Back to TopTop