energies-logo

Journal Browser

Journal Browser

Heat Transfer in Heat Exchangers

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "J1: Heat and Mass Transfer".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 4825

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17 Street, 75-620 Koszalin, Poland
Interests: heat transfer; heat exchangers; two-phase flows; boiling; condensation; minichannels
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Koszalin University of Technology, 75-620 Koszalin, Poland
Interests: heat transfer; heat exchangers; phase-change materials; 3D printing; TPMS
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Guest Editor are honored to invite you to submit to a Special Issue of Energies on the subject area of “Heat Transfer in Heat Exchangers“.

There are many ways to intensify heat transfer in heat exchangers. They may concern the very structure of the exchanger, including the selection of appropriate materials for the construction of walls through which the heat exchange takes place, the development and modification of the heat exchange surface, and the appropriate selection of the exchanger's elements. It is also important to select the appropriate heat transfer fluids and their thermal and flow parameters. The miniaturization of the flow spaces also contributes to a significant intensification of heat transfer, where a reduction in the hydraulic diameter is accompanied by an increase in heat transfer coefficients. During the modernization of the heat exchanger structure, attention should be paid to the change in the flow resistance of the working media. The increase in the intensification of heat exchange should not significantly increase the flow resistance. The submitted papers should be based on mathematical modeling, numerical simulations, and experimental research. Topics of interest for the publication include, but are not limited to:

  • Heat transfer fluids;
  • Heat transfer intensification;
  • Phase-change phenomenon;
  • Flow resistance;
  • Wave phenomena;
  • New designs of heat exchangers,
  • Numerical modeling;
  • Experimental research.

Prof. Dr. Tadeusz Bohdal
Dr. Marcin Kruzel
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heat exchanger
  • innovative designs
  • heat transfer fluid
  • surface enhancement
  • heat transfer intensification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 7426 KiB  
Article
Assessment of Tube–Fin Contact Materials in Heat Exchangers: Guidelines for Simulation and Experiments
by László Budulski, Gábor Loch, László Lenkovics, Mihály Baumann, Balázs Cakó, Tamás Zsebe, Zoltán Meiszterics, Gyula Ferenc Vasvári, Boldizsár Kurilla, Tamás Bitó, Géza György Várady and Dávid Csonka
Energies 2024, 17(22), 5681; https://doi.org/10.3390/en17225681 - 13 Nov 2024
Viewed by 618
Abstract
This paper describes experiments on finned tube heat exchangers, focusing on reducing the thermal contact resistance at the contact between the pipe and the lamella. Various contact materials, such as solders and adhesives, were investigated. Several methods of establishing contact were tested, including [...] Read more.
This paper describes experiments on finned tube heat exchangers, focusing on reducing the thermal contact resistance at the contact between the pipe and the lamella. Various contact materials, such as solders and adhesives, were investigated. Several methods of establishing contact were tested, including blowtorch soldering, brazing, and furnace soldering. Thermal camera measurements were carried out to assess the performance of the contact materials. Moreover, finite element analysis was performed to evaluate the contact materials and establish guidelines in the fin–tube connection modeling by comparing simplified models with the realistic model. Blowtorch brazing tests were successful while soldering attempts failed. During the thermographic measurements, reflective surfaces could be measured after applying a thin layer of paint with high emissivity. These measurements did not provide valuable results; thus, the contact materials were assessed using a finite element analysis. The results from the finite element analysis showed that all the inspected contact materials provided better heat transfer than not using a contact material. The heat transfer rate of the tight-fit realistic model was found to be 33.65 for air and 34.9 for the Zn-22Al contact material. This finding could be utilized in developing heat exchangers with higher heat transfer with the same size. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

23 pages, 7565 KiB  
Article
Enhancing Thermal–Hydraulic Performance in Nuclear Reactor Subchannels with Al2O3 Nanofluids: A CFD Analysis
by Mohammad A. I. Sardar, Mushfiqur Rahman and Philip Rubini
Energies 2024, 17(21), 5486; https://doi.org/10.3390/en17215486 - 1 Nov 2024
Viewed by 758
Abstract
In this paper, the performance of aluminum-based nanofluids with a possible application in pressurized water reactors is numerically investigated. A 605 mm long 4-rod array square (2 × 2) subchannel geometry with a uniform heat flux of 50 kW/m2 has been used [...] Read more.
In this paper, the performance of aluminum-based nanofluids with a possible application in pressurized water reactors is numerically investigated. A 605 mm long 4-rod array square (2 × 2) subchannel geometry with a uniform heat flux of 50 kW/m2 has been used in CFD simulation. This analysis has been carried out using the RNG k-epsilon turbulence model with standard wall function in ANSYS FLUENT 2022R1. The impact of various flow conditions and nanofluid concentrations has been examined. The effects of variable velocities on nanofluid performance have been studied using different Reynolds numbers of 20,000, 40,000, 60,000, and 80,000. The analysis was conducted with Al2O3/water nanofluid concentrations of 1%, 2%, 3%, and 4%. A comparison of the Nusselt number based on five different correlations was conducted, and deviations from each correlation were then presented. The homogeneous single-phase mixer approach has been adopted to model nanofluid characteristics. The result shows a gradual enhancement in the heat transfer coefficient with increasing volume concentrations and Reynolds numbers. A maximum heat transfer coefficient has been calculated for nanofluid at maximum volume concentrations (ϕ = 4%) and highest velocities (Re = 80,000). Compared to the base fluid, heat transfer was enhanced by a factor of 1.09 using 4% Al2O3. The Nusselt number was calculated with a minimal error of 3.62% when compared to the Presser correlation and the maximum deviation has been found from the Dittus–Boelter correlation (13.77%). Overall, the findings suggest that aluminum-based nanofluids could offer enhanced heat transfer capabilities in pressurized water reactors. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

15 pages, 5085 KiB  
Article
Heat Transfer of Crude Waxy Oil with Yield Stress in a Pipe
by Uzak Zhapbasbayev, Timur Bekibayev, Maksim Pakhomov and Gaukhar Ramazanova
Energies 2024, 17(18), 4687; https://doi.org/10.3390/en17184687 - 20 Sep 2024
Viewed by 452
Abstract
This article is devoted to the study of heat exchange of a heated flow of waxy oil in a pipe. Heat exchange between the waxy oil flow and the surrounding environment decreases the oil temperature and sharply increases the rheological properties. The appearance [...] Read more.
This article is devoted to the study of heat exchange of a heated flow of waxy oil in a pipe. Heat exchange between the waxy oil flow and the surrounding environment decreases the oil temperature and sharply increases the rheological properties. The appearance of a solid-like region within the yield-stress fluid flow is a non-trivial problem. This flow property greatly complicates the numerical solution of the system of equations governing the flow and heat transfer of viscoplastic fluids. The Bingham–Papanastasiou model allows one to solve the problem by regularizing the formula for effective molecular viscosity. The novelty of this work lies in establishing the dependence of the Nusselt number on the Reynolds and Bingham numbers for the flow of viscoplastic fluid in a pipe. Via calculations, velocity, temperature, and pressure distributions in the flow were obtained for Bingham numbers ranging from 1.7 to 118.29 and Reynolds numbers ranging from 104 to 2615. The Nusselt number dependence increases with the increase in the Reynolds number and decreases with the decrease in the Bingham number along the pipe length. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

17 pages, 9715 KiB  
Article
Effect of Channel Shape on Heat Transfer and Mechanical Properties of Supercritical CO2 Microchannel Heat Exchanger
by Peiyue Li, Wen Fu, Kaidi Zhang, Qiulong Li, Yi Zhang, Yanmo Li, Zhihua Wang, Xiuhua Hou, Yuwei Sun and Wei Wei
Energies 2024, 17(15), 3774; https://doi.org/10.3390/en17153774 - 31 Jul 2024
Cited by 1 | Viewed by 865
Abstract
The heat exchanger plays a key role in the S-CO2 power cycle of power generation systems based on waste heat and has a large impact on their cost control and compactness. In this paper, we take the channel shape of a microchannel [...] Read more.
The heat exchanger plays a key role in the S-CO2 power cycle of power generation systems based on waste heat and has a large impact on their cost control and compactness. In this paper, we take the channel shape of a microchannel heat exchanger as the research object and combine orthogonal tests and numerical simulation, taking the microchannel cross-section length/short-axis ratio, volume ratio and filling rate as independent variables, to numerically study multi-channel thermal–fluid–solid coupling and explore the effects of different microchannel cross-section length/short-axis ratios, volume ratios and filling rates on the thermal hydraulic and mechanical properties of the heat exchanger. The results show that a change in the channel volume ratio has a greater impact on the thermal hydraulic performance of the heat exchanger and that its heat transfer performance is only marginally affected by a change in the channel filling rate. Additionally, when other geometric parameters are kept to a certain level, the closer the shape of the channel is to a circle, the better its mechanical properties are. Within the range of permissible designs, a change in the channel volume ratio does not have an obvious impact on the mechanical properties of the microchannels, while the channel filling rate has the most significant impact. The most significant effect of the channel filling rate on the mechanical properties occurs through the channel volume ratio. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

12 pages, 2155 KiB  
Article
Experimental Study on the Impact of Lubricant on the Performance of Gravity-Assisted Separated Heat Pipe
by Yiming Rongyang, Weitao Su, Zujun Mao, Wenlin Huang, Bowen Du and Shaozhi Zhang
Energies 2024, 17(15), 3772; https://doi.org/10.3390/en17153772 - 31 Jul 2024
Viewed by 620
Abstract
Gravity-assisted separation heat pipes (GSHPs) are extensively utilized in telecommunications base stations and data centers. To ensure year-round cooling, integrating GSHPs directly with a vapor compression refrigeration system is a viable solution. It is unavoidable that the refrigeration system’s lubricant will infiltrate the [...] Read more.
Gravity-assisted separation heat pipes (GSHPs) are extensively utilized in telecommunications base stations and data centers. To ensure year-round cooling, integrating GSHPs directly with a vapor compression refrigeration system is a viable solution. It is unavoidable that the refrigeration system’s lubricant will infiltrate the heat pipe loop, thereby affecting its thermal performance. This paper examines the performance of a GSHP, which features a water-cooled plate heat exchanger as the condenser and a finned-tube heat exchanger as the evaporator, when the working fluid (R134a) is contaminated with a lubricant (POE, Emkarate RL-46H). The findings are compared with those from a system free of lubricant. The experimental outcomes indicate that the presence of lubricant degrades the heat transfer efficiency, particularly when the filling ratio is adequate and no significant superheat is observed at the evaporator’s outlet. This results in a 3.86% increase in heat transfer resistance. When the charge of the working fluid is suboptimal, the average heat transfer resistance remains relatively constant at a 3% lubricant concentration yet increases to approximately 5.27% at a 4–6% lubricant concentration, and further to 12.32% at a 9% lubricant concentration. Concurrently, as the lubricant concentration fluctuates between 3% and 9%, the oil circulation ratio (OCR) varies from 0.02% to 0.11%. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

25 pages, 9124 KiB  
Article
Numerical Analysis of Altered Parallel Flow Heat Exchanger with Promoted Geometry at Multifarious Baffle Prolongs
by Mehmet Akif Kartal and Ahmet Feyzioğlu
Energies 2024, 17(7), 1676; https://doi.org/10.3390/en17071676 - 1 Apr 2024
Viewed by 961
Abstract
This study investigated the influence of BFFSP on the thermohydraulic performance of a SATHEC(s) using a novel computational approach. The novelty lies in the detailed exploration of the interplay between BFFSP, MFRT, and key performance parameters. Unlike prior studies, which often focus on [...] Read more.
This study investigated the influence of BFFSP on the thermohydraulic performance of a SATHEC(s) using a novel computational approach. The novelty lies in the detailed exploration of the interplay between BFFSP, MFRT, and key performance parameters. Unlike prior studies, which often focus on a limited range of operating conditions, this work employs a comprehensive parametric analysis encompassing two BFFSPs (95 mm and 125 mm) and four MFRTs (0.1, 0.3, 0.5, and 0.7 kg/h). This extensive analysis provides a deeper understanding of the trade-off between the HTRFR enhancement and PDP associated with the BFFSP across a wider range of operating conditions. This investigation leverages the power of computational fluid dynamics (CFD) simulations for high-fidelity analysis. ANSYS Fluent, a widely recognized commercial CFD software package, was used as a computational platform. A three-dimensional steady-state model of HEXR geometry was established. The cold fluid was modeled as water, and the hot fluid was modeled as water. The selection of appropriate turbulence models is crucial for accurate flow simulations within the complex geometry of HEXR. This study incorporates a well-established two-equation turbulence model to effectively capture turbulent flow behavior. The governing equations for mass, momentum, and energy conservation were solved numerically within the CFD framework. Convergence criteria were meticulously established to ensure the accuracy and reliability of the simulation results. BFFs are crucial components in HEXRs as they promote fluid mixing and turbulence on the HTRFR surface, thereby enhancing HTRFR. This study explores the interplay between BFFSP and HTRFR effectiveness. It is hypothesized that a larger BFFSP (125 mm) might lead to a higher HTC owing to the increased fluid mixing. However, the potential drawbacks of the increased PDP due to the flow restriction also need to be considered. The PDP across the HEXR is a critical parameter that affects pumping costs and overall system yield. This study investigates the impact of BFFSP on the PDP. It is expected that a larger BFFSP (125 mm) will result in a higher PDP, owing to the increased resistance to fluid flow. Here, we aim to quantify the trade-off between enhanced HTRFR and increased PDP associated with different BFFSPs. The optimal design of an HEXR seeks a balance between achieving a high HTRFR rate and minimizing pressure losses. HTRPD, a metric combining both HTC and PDP, was employed to evaluate the thermohydraulic performance. We hypothesized that a specific BFFSP might offer a superior HTRPD, indicating an optimal balance between HTRFR effectiveness and PDP for the investigated HEXR geometry and operating conditions. CFD simulations were conducted using ANSYS Fluent to analyze the effects of BFFSP and MFRT on the HTC, PDP, and HTRPD. The simulations employed a commercially available HEXR geometry with water as the cold and hot fluid. The results are presented and discussed to elucidate the relationships between the BFFSP, MFRT, and key performance parameters of the HEXR. This study provides valuable insights into the influence of BFFSP on the thermohydraulic performance of HEXRs. The findings can aid in optimizing the HEXR design by identifying the BFFSP that offers the best compromise between HTRFR enhancement and PDP for specific operating conditions. The results contribute to the knowledge base of HEXR design and optimization, potentially leading to improved yield in various industrial applications. The results indicate that a larger BFFSP (125 mm) leads to higher outlet temperatures but also results in a higher PDP compared to the 95 mm design. Conversely, the 95 mm BFFSP exhibits a lower PDP but achieves a lower HTC. In terms of thermohydraulic performance, as indicated by HTRPD, the 95 mm BFFSP with the lowest MFRT (0.1 kg/h) achieved the highest value, surpassing the 125 mm design by 19.81%. This suggests that a 95 mm BFFSP offers a better trade-off between HTRFR effectiveness and pressure loss, potentially improving the overall HEXR performance. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

Back to TopTop