entropy-logo

Journal Browser

Journal Browser

The Landauer Principle and Its Implementations in Physics, Chemistry and Biology: Current Status, Critics and Controversies

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Thermodynamics".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 17648

Special Issue Editor


E-Mail Website
Guest Editor
Chemical Engineering Department, Engineering Sciences Faculty, Ariel University, Ariel 407000, Israel
Interests: surface science; polymer science; cold plasma technologies; surface characterization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Landauer principle, establishing the energy equivalent of information, has remained as a focus of investigations in the last decade. Although non-equilibrium and quantum extensions of the Landauer principle have been reported, the exact meaning and formulation of the principle remain debatable, and both aspects have been the subject of intense discussion. In its strictest, tightest, and simplest meaning, the Landauer principle states that the erasure of one bit of information requires a minimum energy cost equal to kT ln2, where T is the temperature of a thermal reservoir used in the process and k is Boltzmann’s constant. The Landauer principle was also extended to the transmission of information. Recently, the Landauer principle has been intensively criticized. It has been argued that since it is not independent of the second law of thermodynamics, it is either unnecessary or insufficient as an exorcism of Maxwell’s demon. On the other hand, the Landauer principle enables the “informational” reformulation of thermodynamic laws, thus supporting the information paradigm of physics introduced by John Archibald Wheeler.  Thus, the Landauer principle touches the deepest physical roots of exact sciences.

This Special Issue aims to present different approaches to the implementation of the Landauer principle in physics, chemistry and biology. Submissions addressing engineering applications of the Landauer principle are especially welcome. Review papers are encouraged.

Prof. Dr. Edward Bormashenko
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Landauer principle
  • entropy
  • information
  • the second law of thermodynamics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

8 pages, 275 KiB  
Article
Modified Landauer Principle According to Tsallis Entropy
by Luis Herrera
Entropy 2024, 26(11), 931; https://doi.org/10.3390/e26110931 - 31 Oct 2024
Viewed by 411
Abstract
The Landauer principle establishes a lower bound in the amount of energy that should be dissipated in the erasure of one bit of information. The specific value of this dissipated energy is tightly related to the definition of entropy. In this article, we [...] Read more.
The Landauer principle establishes a lower bound in the amount of energy that should be dissipated in the erasure of one bit of information. The specific value of this dissipated energy is tightly related to the definition of entropy. In this article, we present a generalization of the Landauer principle based on the Tsallis entropy. Some consequences resulting from such a generalization are discussed. These consequences include the modification to the mass ascribed to one bit of information, the generalization of the Landauer principle to the case when the system is embedded in a gravitational field, and the number of bits radiated in the emission of gravitational waves. Full article
Show Figures

Figure 1

16 pages, 2897 KiB  
Article
Elementary Observations: Building Blocks of Physical Information Gain
by J. Gerhard Müller
Entropy 2024, 26(8), 619; https://doi.org/10.3390/e26080619 - 23 Jul 2024
Viewed by 1745
Abstract
In this paper, we are concerned with the process of experimental information gain. Building on previous work, we show that this is a discontinuous process in which the initiating quantum-mechanical matter–instrument interactions are being turned into macroscopically observable events (EOs). In the course [...] Read more.
In this paper, we are concerned with the process of experimental information gain. Building on previous work, we show that this is a discontinuous process in which the initiating quantum-mechanical matter–instrument interactions are being turned into macroscopically observable events (EOs). In the course of time, such EOs evolve into spatio-temporal patterns of EOs, which allow conceivable alternatives of physical explanation to be distinguished. Focusing on the specific case of photon detection, we show that during their lifetimes, EOs proceed through the four phases of initiation, detection, erasure and reset. Once generated, the observational value of EOs can be measured in units of the Planck quantum of physical action h=4.136×1015eVs. Once terminated, each unit of entropy of size kB=8.617×105eV/K, which had been created in the instrument during the observational phase, needs to be removed from the instrument to ready it for a new round of photon detection. This withdrawal of entropy takes place at an energetic cost of at least two units of the Landauer minimum energy bound of ELa=ln2kBTD for each unit of entropy of size kB. Full article
Show Figures

Figure 1

10 pages, 253 KiB  
Article
Landauer Principle and the Second Law in a Relativistic Communication Scenario
by Yuri J. Alvim and Lucas C. Céleri
Entropy 2024, 26(7), 613; https://doi.org/10.3390/e26070613 - 22 Jul 2024
Viewed by 1181
Abstract
The problem of formulating thermodynamics in a relativistic scenario remains unresolved, although many proposals exist in the literature. The challenge arises due to the intrinsic dynamic structure of spacetime as established by the general theory of relativity. With the discovery of the physical [...] Read more.
The problem of formulating thermodynamics in a relativistic scenario remains unresolved, although many proposals exist in the literature. The challenge arises due to the intrinsic dynamic structure of spacetime as established by the general theory of relativity. With the discovery of the physical nature of information, which underpins Landauer’s principle, we believe that information theory should play a role in understanding this problem. In this work, we contribute to this endeavour by considering a relativistic communication task between two partners, Alice and Bob, in a general Lorentzian spacetime. We then assume that the receiver, Bob, reversibly operates a local heat engine powered by information, and seek to determine the maximum amount of work he can extract from this device. As Bob cannot extract work for free, by applying both Landauer’s principle and the second law of thermodynamics, we establish a bound on the energy Bob must spend to acquire the information in the first place. This bound is a function of the spacetime metric and the properties of the communication channel. Full article
18 pages, 957 KiB  
Article
Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives
by Edward Bormashenko
Entropy 2024, 26(5), 423; https://doi.org/10.3390/e26050423 - 15 May 2024
Cited by 2 | Viewed by 1826
Abstract
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a [...] Read more.
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat kBTln2 per a bit of information to its surroundings. The Landauer principle is discussed in the context of fundamental physical limiting principles, such as the Abbe diffraction limit, the Margolus–Levitin limit, and the Bekenstein limit. Synthesis of the Landauer bound with the Abbe, Margolus–Levitin, and Bekenstein limits yields the minimal time of computation, which scales as τmin~hkBT. Decreasing the temperature of a thermal bath will decrease the energy consumption of a single computation, but in parallel, it will slow the computation. The Landauer principle bridges John Archibald Wheeler’s “it from bit” paradigm and thermodynamics. Experimental verifications of the Landauer principle are surveyed. The interrelation between thermodynamic and logical irreversibility is addressed. Generalization of the Landauer principle to quantum and non-equilibrium systems is addressed. The Landauer principle represents the powerful heuristic principle bridging physics, information theory, and computer engineering. Full article
Show Figures

Figure 1

12 pages, 3364 KiB  
Article
Events as Elements of Physical Observation: Experimental Evidence
by J. Gerhard Müller
Entropy 2024, 26(3), 255; https://doi.org/10.3390/e26030255 - 13 Mar 2024
Cited by 2 | Viewed by 2806
Abstract
It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space–time location X=x,t. Considering historic experiments, which have been groundbreaking [...] Read more.
It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space–time location X=x,t. Considering historic experiments, which have been groundbreaking in the evolution of our modern ideas of matter on the atomic, nuclear, and elementary particle scales, it is shown that such experiments produce as outputs streams of macroscopically observable events which accumulate in the course of time into spatio-temporal patterns of events whose forms allow decisions to be taken concerning conceivable alternatives of explanation. Working towards elucidating the physical and informational characteristics of those elementary observations, we show that these represent hugely amplified images of the initiating micro-events and that the resulting macro-images have a cognitive value of 1 bit and a physical value of Wobs=Eobsτobsh. In this latter equation, Eobs stands for the energy spent in turning the initiating micro-events into macroscopically observable events, τobs for the lifetimes during which the generated events remain macroscopically observable, and h for Planck’s constant. The relative value Gobs=Wobs/h finally represents a measure of amplification that was gained in the observation process. Full article
Show Figures

Figure 1

14 pages, 527 KiB  
Article
On the Precise Link between Energy and Information
by Cameron Witkowski, Stephen Brown and Kevin Truong
Entropy 2024, 26(3), 203; https://doi.org/10.3390/e26030203 - 27 Feb 2024
Cited by 2 | Viewed by 2100
Abstract
We present a modified version of the Szilard engine, demonstrating that an explicit measurement procedure is entirely unnecessary for its operation. By considering our modified engine, we are able to provide a new interpretation of Landauer’s original argument for the cost of erasure. [...] Read more.
We present a modified version of the Szilard engine, demonstrating that an explicit measurement procedure is entirely unnecessary for its operation. By considering our modified engine, we are able to provide a new interpretation of Landauer’s original argument for the cost of erasure. From this view, we demonstrate that a reset operation is strictly impossible in a dynamical system with only conservative forces. Then, we prove that approaching a reset yields an unavoidable instability at the reset point. Finally, we present an original proof of Landauer’s principle that is completely independent from the Second Law of thermodynamics. Full article
Show Figures

Figure 1

11 pages, 319 KiB  
Article
Thermodynamical versus Logical Irreversibility: A Concrete Objection to Landauer’s Principle
by Didier Lairez
Entropy 2023, 25(8), 1155; https://doi.org/10.3390/e25081155 - 1 Aug 2023
Cited by 3 | Viewed by 1639
Abstract
Landauer’s principle states that the logical irreversibility of an operation, such as erasing one bit, whatever its physical implementation, necessarily implies its thermodynamical irreversibility. In this paper, a very simple counterexample of physical implementation (that uses a two-to-one relation between logic and thermodynamic [...] Read more.
Landauer’s principle states that the logical irreversibility of an operation, such as erasing one bit, whatever its physical implementation, necessarily implies its thermodynamical irreversibility. In this paper, a very simple counterexample of physical implementation (that uses a two-to-one relation between logic and thermodynamic states) is given that allows one bit to be erased in a thermodynamical quasistatic manner (i.e., one that may tend to be reversible if slowed down enough). Full article
Show Figures

Figure 1

12 pages, 914 KiB  
Article
Dissipation during the Gating Cycle of the Bacterial Mechanosensitive Ion Channel Approaches the Landauer Limit
by Uğur Çetiner, Oren Raz, Madolyn Britt and Sergei Sukharev
Entropy 2023, 25(5), 779; https://doi.org/10.3390/e25050779 - 10 May 2023
Cited by 1 | Viewed by 1868
Abstract
The Landauer principle sets a thermodynamic bound of kBT ln 2 on the energetic cost of erasing each bit of information. It holds for any memory device, regardless of its physical implementation. It was recently shown that carefully built artificial devices [...] Read more.
The Landauer principle sets a thermodynamic bound of kBT ln 2 on the energetic cost of erasing each bit of information. It holds for any memory device, regardless of its physical implementation. It was recently shown that carefully built artificial devices can attain this bound. In contrast, biological computation-like processes, e.g., DNA replication, transcription and translation use an order of magnitude more than their Landauer minimum. Here, we show that reaching the Landauer bound is nevertheless possible with biological devices. This is achieved using a mechanosensitive channel of small conductance (MscS) from E. coli as a memory bit. MscS is a fast-acting osmolyte release valve adjusting turgor pressure inside the cell. Our patch-clamp experiments and data analysis demonstrate that under a slow switching regime, the heat dissipation in the course of tension-driven gating transitions in MscS closely approaches its Landauer limit. We discuss the biological implications of this physical trait. Full article
Show Figures

Figure 1

Review

Jump to: Research

12 pages, 298 KiB  
Review
Landauer Bound and Continuous Phase Transitions
by Maria Cristina Diamantini
Entropy 2023, 25(7), 984; https://doi.org/10.3390/e25070984 - 28 Jun 2023
Viewed by 1554
Abstract
In this review, we establish a relation between information erasure and continuous phase transitions. The order parameter, which characterizes these transitions, measures the order of the systems. It varies between 0, when the system is completely disordered, and 1, when the system is [...] Read more.
In this review, we establish a relation between information erasure and continuous phase transitions. The order parameter, which characterizes these transitions, measures the order of the systems. It varies between 0, when the system is completely disordered, and 1, when the system is completely ordered. This ordering process can be seen as information erasure by resetting a certain number of bits to a standard value. The thermodynamic entropy in the partially ordered phase is given by the information-theoretic expression for the generalized Landauer bound in terms of error probability. We will demonstrate this for the Hopfield neural network model of associative memory, where the Landauer bound sets a lower limit for the work associated with ‘remembering’ rather than ‘forgetting’. Using the relation between the Landauer bound and continuous phase transition, we will be able to extend the bound to analog computing systems. In the case of the erasure of an analog variable, the entropy production per degree of freedom is given by the logarithm of the configurational volume measured in units of its minimal quantum. Full article
Back to TopTop