Information Theory in Emerging Machine Learning Techniques
A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Information Theory, Probability and Statistics".
Deadline for manuscript submissions: 15 March 2025 | Viewed by 405
Special Issue Editor
Special Issue Information
Dear Colleagues,
In the past two decades, deep learning, as part of machine learning, has undergone significant development. Many emerging techniques have achieved state-of-the-art performance across diverse learning tasks and areas of application, such as natural language processing, robotics, multimedia processing, and healthcare. However, many of these new methods are based on empirical evidence. While theoretical machine learning and its relationships with information theory are well developed, the theoretical analysis for deep learning has not kept pace with the engineering advancements of new learning mechanisms.
There are substantial aspects of deep learning that are not common in other areas, like its unique properties of generalization, representation learning, and latent features, its interaction with optimization, generalization and over-parameterization, layer-wise aspects of the representation, stability, and robustness. These provide a rich foundation for the application and use of information theory.
Information theory has been fundamental to modern machine learning and can significantly contribute to the development of deep learning theory. This Special Issue aims to (1) provide information-theoretical insights into new deep learning methods and (2) develop new deep learning mechanisms, or adapt current mechanisms grounded in information theory. Its focus on emerging machine learning techniques indicates a particular interest in cutting-edge deep learning techniques that have not been analyzed previously and have not been examined through simplified architectures.
Dr. Ke Sun
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- deep learning
- information theory
- information divergence
- Riemannian geometry
- Fisher information
- information bottleneck
- deep autoencoders
- normalization in deep learning
- deep neural network optimizers
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.