Yarrowia lipolytica: A Beneficial Yeast as a Biofactory for Biotechnological Applications: 3rd Edition

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Microbial Metabolism, Physiology & Genetics".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 608

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
Interests: lipase-catalyzed ester synthesis; lipophilization; enzymatic (trans)esterification; whole-cell modification of phenolic compounds; microbiology; yarrowia lipolytica; lipases biosynthesis; antimicrobial and antioxidant activities of phenolic compounds; microbial enzymes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Yeasts were used for fermentation processes long before their various properties were discovered and described. Among at least 1500 recognized yeast species, in addition to the most well-known baker’s yeasts, e.g., Saccharomyces cerevisiae, other yeasts also stand out, often characterized by their unique features and capabilities.

Yarrowia lipolytica is one of the most studied “non-conventional” yeast species. The high secretory capacity and the capability of biosynthesis of many important secondary metabolites affect the growing scientific interest and biotechnological importance of this yeast. Y. lipolytica is considered to be non-pathogenic, and additionally, some commercial-scale processes with its participation have been granted GRAS (generally recognized as safe) status by the US Food and Drug Administration (FDA). The major advantages of using Y. lipolytica are its ability to grow and consume of a wide range of substrates, such as alkanes, fatty acids, fats, and oils, as well as some waste substrates, namely, crude glycerol, waste cooking oils, sewage sludge, or olive mill wastewater, with simultaneous biosynthesis of varied metabolites.

This Special Issue will compile the current state-of-the-art research on Y. lipolytica and shed light on the current research directions with the use of this yeast. Potential topics include but are not limited to the following:

  • Metabolic engineering of Y. lipolytica;
  • The biosynthesis of secondary metabolites, namely enzymes, e.g., lipases or proteases, as well as organic acids, sugar alcohols, flavors, and aromas;
  • Whole-cell catalysis;
  • Lipid biosynthesis and accumulation;
  • Utilization of agri-food waste.

Dr. Bartłomiej Zieniuk
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Yarrowia lipolytica
  • secondary metabolites
  • single-cell oils (SCO)
  • lipid accumulation
  • single-cell proteins (SCP)
  • enzymes biosynthesis
  • lipases production
  • metabolic engineering
  • organic acids synthesis
  • agri-food waste upgradation
  • whole-cell catalysis
  • biosynthesis of metal nanoparticles
  • bioreactor processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1190 KiB  
Article
Improving the Synthesis of Odd-Chain Fatty Acids in the Oleaginous Yeast Yarrowia lipolytica
by Nour Tabaa Chalabi, Sally El Kantar, Camilla Pires De Souza, Anissa Khelfa, Jean-Marc Nicaud, Espérance Debs, Nicolas Louka and Mohamed Koubaa
Fermentation 2024, 10(12), 597; https://doi.org/10.3390/fermentation10120597 - 22 Nov 2024
Viewed by 361
Abstract
(1) Background: Odd-chain fatty acids (OCFAs) have garnered attention for their potential health benefits and unique roles in various biochemical pathways. Yarrowia lipolytica, a versatile yeast species, is increasingly studied for its capability to produce OCFAs under controlled genetic and environmental conditions. [...] Read more.
(1) Background: Odd-chain fatty acids (OCFAs) have garnered attention for their potential health benefits and unique roles in various biochemical pathways. Yarrowia lipolytica, a versatile yeast species, is increasingly studied for its capability to produce OCFAs under controlled genetic and environmental conditions. However, optimizing the synthesis of specific OCFAs, such as cis-9-heptadecenoic acid (C17:1), remains a challenge. (2) Methods: The gene coding for the Δ9 fatty acid desaturase, YlOLE1, and the gene coding the diacylglycerol O-acyltransferase 2, YlDGA2, were overexpressed in Y. lipolytica. With the engineered strain, the main goal was to fine-tune the production of OCFA-enriched lipids by optimizing the concentrations of sodium propionate and sodium acetate used as precursors for synthesizing odd- and even-chain fatty acids, respectively. (3) Results: In the strain overexpressing only YlDGA2, no significant changes in fatty acid composition or lipid content were observed compared to the control strain. However, in the strain overexpressing both genes, while no significant changes in lipid content were noted, a significant increase was observed in OCFA content. The optimal conditions for maximizing the cell density and the C17:1 content in lipids were found to be 2.23 g/L of sodium propionate and 17.48 g/L of sodium acetate. These conditions resulted in a cell density (optical density at 600 nm) of 19.5 ± 0.46 and a C17:1 content of 45.56% ± 1.29 in the culture medium after 168 h of fermentation. (4) Conclusions: By overexpressing the YlOLE1 gene and optimizing the concentrations of fatty acid precursors, it was possible to increase the content of OCFAs, mainly C17:1, in lipids synthesized by Y. lipolytica. Full article
Show Figures

Figure 1

Back to TopTop