Information Fusion Based on GIS

Special Issue Editors


E-Mail Website
Guest Editor
Dr. Christine Pohl CONSULTING, Osnabrueck, Germany
Interests: remote sensing; image fusion; geoscience; earth observation; optical and radar image processing; geocoding

E-Mail Website
Guest Editor
Department of Earth Observation Science, University of Twente, 7500 Enschede, The Netherlands
Interests: remote sensing; earth observation; geoinformatics; Environment; image processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, the amount of data and information with reference to geographic location has increased drastically. Especially with the availability of open source software and free data, the integration of multiple sources of information has become an important issue.

The Special Issue aims at promoting new and innovative studies, experiences, and models to improve the quality of information derived from many different sources.

Accurate and up-to-date information on our environment are crucial to a sustainable living on the Earth. Climate change, environmental processes, natural resource management, urban development, and other important research themes require temporal monitoring and accurate information. The information originates from different dates, different data sources, different interpretations, and different analysis methods. Therefore, the unification and intelligent combination of geo-located information plays a pivotal role for decision-makers, planners, and citizens.

This Special Issue intends to provide an overview of current research and state-of-the-art processing of information in the context of geographic information systems (GIS). Big data aspects as well as multimodal data acquisition and integration, data and information fusion approaches, and the quality and quantity of topics are some of the possible themes to be covered in this Issue. Authors are welcome to submit manuscripts covering, for example, the following topics in the context of GIS:

- Data integration;
- Multimodal information sources;
- Remote sensing data and information fusion;
- Object-oriented analysis of remote sensing data for GIS-ready information;
- Information management in a GIS;
- Information actuality;
- Information quality;
- Human-oriented geographic information presentation;
- Big data;
- Information semantics;
- Information analysis.

Prof. Christine Pohl
Prof. (Em.) Dr. J.L. van Genderen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. ISPRS International Journal of Geo-Information is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Big data
  • Information extraction
  • Compatibility of information
  • Geo crowdsourced data
  • Geographical visualization
  • Information fusion
  • Information quality
  • Information validity
  • Querying spatiotemporal information.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6087 KiB  
Article
Information Fusion for Cultural Heritage Three-Dimensional Modeling of Malay Cities
by Norzailawati Mohd Noor, Illyani Ibrahim, Alias Abdullah and Ahmad Afiq Aiman Abdullah
ISPRS Int. J. Geo-Inf. 2020, 9(3), 177; https://doi.org/10.3390/ijgi9030177 - 17 Mar 2020
Cited by 23 | Viewed by 4301
Abstract
Malaysia’s heritage structures are facing challenges due to rapid local development and societal challenges that threaten their cultural and artistic values. Improving conservation approaches in this context is an urgent and crucial task. The application of geo-information technologies in laser scanning, photogrammetry, and [...] Read more.
Malaysia’s heritage structures are facing challenges due to rapid local development and societal challenges that threaten their cultural and artistic values. Improving conservation approaches in this context is an urgent and crucial task. The application of geo-information technologies in laser scanning, photogrammetry, and geographic information systems (GISs) has significantly improved these conservation approaches. In this study, we fused drone images and range data from a laser scanner to construct a high-resolution three-dimensional GIS city model for one traditional Malay settlement located in Malaysia. The results showed that fusing photogrammetry and laser scanning can effectively capture the architectural uniqueness of Malay buildings, including specific façade geometries on walls, roofs, and motifs. The findings show that the development of various geoinformation approaches can assist with the conservation of Malay city heritage in this region. Full article
(This article belongs to the Special Issue Information Fusion Based on GIS)
Show Figures

Figure 1

20 pages, 6842 KiB  
Article
Fire Risk Assessment in Dense Urban Areas Using Information Fusion Techniques
by Zohreh Masoumi, John van L.Genderen and Jamshid Maleki
ISPRS Int. J. Geo-Inf. 2019, 8(12), 579; https://doi.org/10.3390/ijgi8120579 - 11 Dec 2019
Cited by 40 | Viewed by 7646
Abstract
A comprehensive fire risk assessment is very important in dense urban areas as it provides an estimation of people at risk and property. Fire policy and mitigation strategies in developing countries are constrained by inadequate information, which is mainly due to a lack [...] Read more.
A comprehensive fire risk assessment is very important in dense urban areas as it provides an estimation of people at risk and property. Fire policy and mitigation strategies in developing countries are constrained by inadequate information, which is mainly due to a lack of capacity and resources for data collection, analysis, and modeling. In this research, we calculated the fire risk considering two aspects, urban infrastructure and the characteristics of a high-rise building for a dense urban area in Zanjan city. Since the resources for this purpose were rather limited, a variety of information was gathered and information fusion techniques were conducted by employing spatial analyses to produce fire risk maps. For this purpose, the spatial information produced using unmanned aerial vehicles (UAVs) and then attribute data (about 150 characteristics of each high-rise building) were gathered for each building. Finally, considering high-risk urban infrastructures, like the position of oil and gas pipes and electricity lines and the fire safety analysis of high-rise buildings, the vulnerability map for the area was prepared. The fire risk of each building was assessed and its risk level was identified. Results can help decision-makers, urban planners, emergency managers, and community organizations to plan for providing facilities and minimizing fire hazards and solve some related problems to reduce the fire risk. Moreover, the results of sensitivity analysis (SA) indicate that the social training factor is the most effective causative factor in the fire risk. Full article
(This article belongs to the Special Issue Information Fusion Based on GIS)
Show Figures

Figure 1

18 pages, 2491 KiB  
Article
Point of Interest Matching between Different Geospatial Datasets
by Yue Deng, An Luo, Jiping Liu and Yong Wang
ISPRS Int. J. Geo-Inf. 2019, 8(10), 435; https://doi.org/10.3390/ijgi8100435 - 1 Oct 2019
Cited by 19 | Viewed by 4571
Abstract
Point of interest (POI) matching finds POI pairs that refer to the same real-world entity, which is the core issue in geospatial data integration. To address the low accuracy of geospatial entity matching using a single feature attribute, this study proposes a method [...] Read more.
Point of interest (POI) matching finds POI pairs that refer to the same real-world entity, which is the core issue in geospatial data integration. To address the low accuracy of geospatial entity matching using a single feature attribute, this study proposes a method that combines the D–S (Dempster–Shafer) evidence theory and a multiattribute matching strategy. During POI data preprocessing, this method calculates the spatial similarity, name similarity, address similarity, and category similarity between pairs from different geospatial datasets, using the multiattribute matching strategy. The similarity calculation results of these four types of feature attributes were used as independent evidence to construct the basic probability distribution. A multiattribute model was separately constructed using the improved combination rule of the D–S evidence theory, and a series of decision thresholds were set to give the final entity matching results. We tested our method with a dataset containing Baidu POIs and Gaode POIs from Beijing. The results showed the following—(1) the multiattribute matching model based on improved DS evidence theory had good performance in terms of precision, recall, and F1 for entity-matching from different datasets; (2) among all models, the model combining the spatial, name, and category (SNC) attributes obtained the best performance in the POI entity matching process; and (3) the method could effectively address the low precision of entity matching using a single feature attribute. Full article
(This article belongs to the Special Issue Information Fusion Based on GIS)
Show Figures

Figure 1

Back to TopTop