ijms-logo

Journal Browser

Journal Browser

Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 April 2025 | Viewed by 2726

Special Issue Editor


E-Mail Website
Guest Editor
Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Interests: plant ecophysiology; biotic stress; abiotic stress; photosynthesis; antioxidative mechanisms; photoprotective mechanisms; mineral nutrition; ROS
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Throughout their life cycle, plants are continuously exposed to various abiotic stress factors that negatively influence plant growth, development, and crop productivity. However, plants have developed several dynamic approaches at the morphological, physiological, and biochemical levels that enable them to avoid and/or tolerate abiotic stresses. Avoidance mechanisms mainly include morphological and physiological adjustments that allow the plant to escape from the abiotic stress factor. In the case of drought stress, these adjustments involve an increased root system, increased leaf thickness, decreased leaf area, reduced stomatal number and conductance, and leaf rolling or folding to minimize evapotranspiration. Drought tolerance traits are correlated with the maintenance of the plant’s water status through osmotic adjustment, involving the accumulation of osmolytes that help the plants preserve their water status and acclimate to water deficit. The impact of abiotic stress factors on plants depends on the intensity, frequency, and duration of the stress, as well as on the plant species.

Despite various studies aiming to elucidate the mechanisms of plant tolerance to abiotic stress factors, the exact molecular mechanisms are not yet fully understood. Therefore, to evaluate the main reasons for crop yield reduction and food production worldwide, we need to illuminate the molecular mechanisms of plant abiotic stress tolerance to various stresses, such as drought, temperature, salinity, nutrient deficiency, light intensity, heavy metals, and UV radiation, as well as their influence on the growth, physiology, biochemistry, and photosynthesis of the plant species.

This Special Issue of IJMS will highlight the molecular mechanisms of plant tolerance to abiotic stresses, contributing to a better understanding of plant responses to stress factors, which can help in the development of realistic interventions to increase agricultural productivity.

Scientists from all around the world are invited to submit original research and review articles on all aspects of plant physiology and development, including growth, water relations, nutrition, photosynthesis, and related plant physiological processes, as well as changes in metabolism using omic techniques (ionomics, metabolomics, transcriptomics, proteomics, genomics, etc.).

Prof. Dr. Michael Moustakas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • acclimation
  • drought
  • salinity
  • pesticides
  • high–low temperature
  • high–low light intensity
  • nutrient deficiencies
  • heavy metals
  • UV radiation
  • photosynthetic efficiency
  • ROS
  • antioxidant mechanisms
  • redox regulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2323 KiB  
Article
The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress
by Hubert Sytykiewicz, Paweł Czerniewicz, Magdalena Ruszczyńska and Katarzyna Kmieć
Int. J. Mol. Sci. 2024, 25(20), 11280; https://doi.org/10.3390/ijms252011280 - 20 Oct 2024
Viewed by 691
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental [...] Read more.
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental stimuli remain largely unclear. Therefore, the aim of this study was to assess the influence of selected single stresses and combined stresses (i.e., Rhopalosiphum padi L. aphid infestation, drought, aphid infestation, and drought) and post-stress recovery on the contents of NO and peroxynitrite anion (ONOO), as well as the levels of mRNA and protein nitration (i.e., the 8-nitroguanine and protein 3-nitrotyrosine amounts, respectively), in maize seedlings (Zea mays L.). Moreover, the expression patterns of the two tested genes (nos-ip, encoding nitric oxide synthase-interacting protein, and nr1, encoding nitrate reductase 1) involved in NO metabolism in maize plants were quantified. We identified significant intervarietal, time-course, and stress-dependent differences in the levels of the quantified parameters. Under the investigated stress conditions, the aphid-resistant Waza cv. seedlings were characterized by a higher and earlier NO accumulation and mRNA nitration level and an increased expression of the two target genes (nos-ip and nr1), compared to the aphid-susceptible Złota Karłowa cv. seedlings. Conversely, the Złota Karłowa plants responded with a greater elevation in the content of ONOO and protein 3-nitrotyrosine than the Waza cv. plants The multifaceted role of NO and its derivatives in maize plants challenged by single and combined stresses, as well as during post-stress recovery, is discussed. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

17 pages, 4749 KiB  
Article
SlHB8 Is a Novel Factor in Enhancing Cold Resistance in Tomato Anthers by Modulating Tapetal Cell Death
by Hongling Guan, Canye Yu, Zaohai Zeng, Huimin Hu, Yuxiang Lin, Caiyu Wu, Yiwen Yao, Rui Xia, Zhengguo Li, Chongjian Ma, Riyuan Chen, Baowen Huang and Yanwei Hao
Int. J. Mol. Sci. 2024, 25(17), 9336; https://doi.org/10.3390/ijms25179336 - 28 Aug 2024
Viewed by 802
Abstract
Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible [...] Read more.
Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

21 pages, 11250 KiB  
Article
GDSL in Lilium pumilum (LpGDSL) Confers Saline–Alkali Resistance to the Plant by Enhancing the Lignin Content and Balancing the ROS
by Zongying Wang, Wenhao Wan, Miaoxin Shi, Shangwei Ji, Ling Zhang, Xiaolu Wang, Lingshu Zhang, Huitao Cui, Xingyu Liu, Hao Sun, Fengshan Yang and Shumei Jin
Int. J. Mol. Sci. 2024, 25(17), 9319; https://doi.org/10.3390/ijms25179319 - 28 Aug 2024
Viewed by 535
Abstract
In order to explore the response mechanism of Lilium pumilum (L. pumilum) to saline–alkali stress, we successfully cloned LpGDSL (GDSL lipase, Gly-Asp-Ser-Leu) from L. pumilum. The qRT-PCR results indicated that the LpGDSL expression was higher in the leaves of L. [...] Read more.
In order to explore the response mechanism of Lilium pumilum (L. pumilum) to saline–alkali stress, we successfully cloned LpGDSL (GDSL lipase, Gly-Asp-Ser-Leu) from L. pumilum. The qRT-PCR results indicated that the LpGDSL expression was higher in the leaves of L. pumilum, and the expression of the LpGDSL reached the highest level at 12 h in leaves under 11 mM H2O2, 200 mM NaCl, 25 mM Na2CO3, and 20 mM NaHCO3. The bacteriophage overexpressing LpGDSL was more tolerant than the control under different NaHCO3 contents. Overexpressed and wild-type plants were analyzed for phenotype, chlorophyll content, O2 content, H2O2 content, lignin content, and so on. Overexpressed plants had significantly higher resistance than the wild type and were less susceptible to saline–alkali stress. The yeast two-hybrid and BiFC assays demonstrated the existence of an interaction between LpGDSL and LpBCP. The yeast one-hybrid assay and transcriptional activation assay confirmed that B3 transcription factors could act on LpGDSL promoters. Under saline–alkali stress, L. pumilum will promote the expression of LpGDSL, which will then promotes the accumulation of lignin and the scavenging of reactive oxygen species (ROS) to reduce its damage, thus improving the saline–alkali resistance of the plant. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

Back to TopTop