ijms-logo

Journal Browser

Journal Browser

Cellular and Molecular Mechanisms of Plant Responses to Light (Second Edition)

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 2949

Special Issue Editors


E-Mail Website
Guest Editor
Department of Horticulture, Division of Applied Life Science, Graduate School, Gyeongsang National University (GNU), Jinju 52828, Republic of Korea
Interests: floriculture; transplants (micropropagated and plug); silicon in horticulture; plant factory; protected horticulture; hydroponics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The absorption of light energy by plants is the basis of photosynthesis, growth, and development. However, different photoreceptors in plants specifically recognize different wavelengths of light signals to regulate growth and development. Hence, light can be manipulated to control many aspects of plants, including flowering and photomorphogenesis. In addition to natural light, the significant development and wide applications of artificial lighting systems, such as fluorescent, high-pressure sodium and metal halide lamps, and even light-emitting diodes, are used as supplemental or sole light sources for varied purposes. As opposed to natural sunlight, which provides a whole spectrum of light, artificial lights contain a limited spectrum and therefore, the composition of the spectrum can be added to accomplish the desired efficacy. Lights can now be used in plant tissue culture, the promotion of the growth and development of nursery plants, photoperiodic control of flowering, and enhancing horticultural productivity in greenhouses and plant factories. As researchers have worked to reveal the roles of light in relation to plants for a long period of time, more and more underlying mechanisms at cellular and molecular levels have been revealed, making this subject one of the most interesting research topics in plant science.

Being led by Prof. Dr. Qichang Yang and Prof. Dr. Byoung Ryong Jeong, and assisted by our Topical Advisory Panel Member Dr. Jiangtao Hu (Chinese Academy of Agricultural Sciences), this Special Issue invites authors to publish original research papers and critical reviews on ‘Cellular and Molecular Mechanisms of Plant Responses to Light 2.0’. Although it is not exclusive, the focus will be on the expression of genes, biosynthesis of metabolites and antioxidants, resistance to stresses, photomorphogenesis, photoperiodic responses, and nutrient uptake of plants in response to light.

Prof. Dr. Qichang Yang
Prof. Dr. Byoung Ryong Jeong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • celluar mechanism
  • light
  • molecular mechanism
  • plant growth
  • plant development
  • gene expression
  • primary and secondary metabolites
  • photomorphogenesis
  • photoperiod response
  • stress resistance
  • nutrient uptake

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3258 KiB  
Article
Light Quality Plays a Crucial Role in Regulating Germination, Photosynthetic Efficiency, Plant Development, Reactive Oxygen Species Production, Antioxidant Enzyme Activity, and Nutrient Acquisition in Alfalfa
by Md Atikur Rahman, Sang-Hoon Lee, Hyung Soo Park, Chang-Woo Min, Jae Hoon Woo, Bo Ram Choi, Md. Mezanur Rahman and Ki-Won Lee
Int. J. Mol. Sci. 2025, 26(1), 360; https://doi.org/10.3390/ijms26010360 - 3 Jan 2025
Viewed by 676
Abstract
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield [...] Read more.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa (Medicago sativa L.). Fluorescence staining showed that red light significantly triggered the oxidative stress indicators compared to blue and white light, while the combined red and blue light treatment significantly reduced the ROS (O2•−, H2O2) intensity in alfalfa seedlings. Interestingly, the combined light treatment significantly boosted the seed germination rate (%), maximum photochemical quantum yield of PSII (Fv/Fm), leaf greenness (SPAD score), photosynthetic pigment levels (chlorophyll a, chlorophyll b, and carotenoids), and plant biomass yield in alfalfa seedlings. The red and/or combined (red+blue) light treatments significantly regulated antioxidant enzymes (SOD, CAT, APX, and GR) and the expression of genes related to the ascorbate–glutathione (AsA-GSH) pathway, including monodehydroascorbate reductase (MsMDHAR), dehydroascorbate reductase (MsDHAR), ascorbate peroxidase (MsAPX), and glutathione reductase (MsGR). These results indicate that light quality is crucial for regulating the morphological, physiological, and molecular traits linked to alfalfa improvement. These findings suggest a new approach to enhancing the adaptation, as well as the morphological and agronomic yield, of alfalfa and forage legumes through light-quality-mediated improvement. Full article
Show Figures

Figure 1

17 pages, 5212 KiB  
Article
Overexpression of LAR1 Suppresses Anthocyanin Biosynthesis by Enhancing Catechin Competition Leading to Promotion of Proanthocyanidin Pathway in Spine Grape (Vitis davidii) Cells
by Junxuan Lin, Gongti Lai, Aolin Guo, Liyuan He, Fangxue Yang, Yuji Huang, Jianmei Che and Chengchun Lai
Int. J. Mol. Sci. 2024, 25(22), 12087; https://doi.org/10.3390/ijms252212087 - 11 Nov 2024
Viewed by 764
Abstract
Proanthocyanidins (PAs) are a class of polyphenolic compounds recognized for their potent antioxidant, anti-cancer, anti-inflammatory, and cardioprotective properties. However, the production of PAs from natural sources is often limited by high costs, resource wastage, and environmental damage. In this study, we investigated the [...] Read more.
Proanthocyanidins (PAs) are a class of polyphenolic compounds recognized for their potent antioxidant, anti-cancer, anti-inflammatory, and cardioprotective properties. However, the production of PAs from natural sources is often limited by high costs, resource wastage, and environmental damage. In this study, we investigated the overexpression of VdLAR1, along with phenotypic observation, metabolite determination, light quality treatment, and RT-qPCR analysis, in spine grape cells. The results demonstrated a significant increase in the contents of proanthocyanidins and flavonoids in pVdLAR1-overexpressing transgenic cell lines, while anthocyanin levels showed a decreasing trend. Furthermore, the treatment with white and blue light on the T5 cell line resulted in enhanced accumulation of proanthocyanidins, catechins, and flavonoids, whereas anthocyanins and epicatechins exhibited a declining pattern. Thus, short-wavelength light promoted the accumulation of metabolites, with the proanthocyanidin content in the T5 transformed cell line reaching 2512.0 μg/g (FW) during blue light incubation. RT-qPCR analysis revealed that the key genes involved in the biosynthesis of proanthocyanidin and anthocyanin were upregulated in the transgenic spine grape cell lines, with VdLAR1 expression increasing by several hundredfold, far surpassing the expression levels of LDOX and ANR. The VdLAR1 overexpression markedly improved substrate competitiveness within the metabolic pathway, promoting catechin biosynthesis while inhibiting the production of epicatechins and anthocyanins. This finding provides compelling evidence that LAR1 is a crucial gene for catechin biosynthesis. This research establishes both theoretical and practical foundations for the regulation and development of natural proanthocyanidins, addressing issues related to high costs, safety concerns, resource wastage, and environmental damage associated with their production. Full article
Show Figures

Graphical abstract

18 pages, 3640 KiB  
Article
Participation of miR165a in the Phytochrome Signal Transduction in Maize (Zea mays L.) Leaves under Changing Light Conditions
by Dmitry N. Fedorin, Alexander T. Eprintsev, Victoria O. Chuykova and Abir U. Igamberdiev
Int. J. Mol. Sci. 2024, 25(11), 5733; https://doi.org/10.3390/ijms25115733 - 24 May 2024
Viewed by 986
Abstract
The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and [...] Read more.
The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and not with a change in the rate of its synthesis from the precursor. The use of knockout Arabidopsis plants for the phytochrome A and B genes demonstrated that the presence of an active form of phytochrome B causes an increase in the level of the RNA-induced silencing miR165a complex, which triggers the degradation of target mRNAs. The two fractions of vesicles from maize leaves, P40 and P100 that bind miR165a, were isolated by ultracentrifugation. The P40 fraction consisted of larger vesicles of the size >0.170 µm, while the P100 fraction vesicles were <0.147 µm. Based on the quantitative PCR data, the predominant location of miR165a on the surface of extracellular vesicles of both fractions was established. The formation of the active form of phytochrome upon the irradiation of maize plants with red light led to a redistribution of miR165a, resulting in an increase in its proportion inside P40 vesicles and a decrease in P100 vesicles. Full article
Show Figures

Figure 1

Back to TopTop