ijms-logo

Journal Browser

Journal Browser

Molecular Pharmacology of Medicinal Plants

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 1558

Special Issue Editor

Special Issue Information

Dear Colleagues,

It is well known that medicinal plants have various therapeutic values that can be used for the treatment of many ailments, resulting from their content in bioactive phytochemicals with several biological properties. Many cardiovascular drugs such as reserpine, digoxin, and deslanoside are isolated and developed from plants. Natural products have always been a major source for drug development in cancer therapy. A considerable portion of anticancer drugs currently used in the clinic are of natural origin, e.g., Vinca alkaloids, taxanes, and others. The same observation was made with diabetes medicines such as metformin, among others. Some medicinal plants have demonstrated their action on the immune system, but more research is still needed to learn more about the different properties and mechanisms involved in acting on the immune system. This Special Issue aims to provide an overview of the latest progress made in the field of medicinal plant research and the molecular and clinical phytopharmacology of plant extracts from cellular and molecular pharmacology to demonstrate the full potential of medicinal plants. Original research papers and review articles focused on these different areas are welcome.

Dr. Bruno Eto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • drug development
  • molecular pharmacology
  • clinical phytopharmacology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4942 KiB  
Article
Anti-Inflammatory Effects and Metabolomic Analysis of Ilex Rotunda Extracted by Supercritical Fluid Extraction
by Duc Dat Le, Young Su Jang, Vinhquang Truong, Thientam Dinh, Thinhulinh Dang, Soojung Yu and Mina Lee
Int. J. Mol. Sci. 2024, 25(22), 11965; https://doi.org/10.3390/ijms252211965 - 7 Nov 2024
Viewed by 413
Abstract
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and [...] Read more.
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and their fractions were evaluated for their anti-inflammatory potential. In cytokine assays, the extract, n-hexane (H), methylene chloride (MC), and EtOAc (E) fractions of the twigs of I. rotunda significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α production in RAW264.7 macrophages. Furthermore, the extract, H, and MC fractions of the leaves of I. rotunda modulated cytokine expression by downregulating LPS-induced NO, IL-6, and TNF-α production in RAW264.7 macrophages. Western blotting analysis revealed that the extracts and fractions of the leaves and twigs of I. rotunda inhibited inflammatory cytokines by inactivating nuclear factor kappa B (NFκB) action by reducing the phosphorylation of transcript factor (p65) and nuclear factor-kappa B inhibitor alpha (IκBα) degradation, or by inactivating mitogen-activated protein kinase (MAPK) through the p38 or ERK signaling pathways via the active ingredients of the leaves and twigs of I. rotunda. Ultra-high-resolution liquid chromatography–Orbitrap mass analysis (UHPLC–ESI-Orbitrap-MS/MS)-based molecular networking, in cooperation with social open platform-guided isolation and dereplication, led to the identification of metabolites in this plant. Our findings indicate that the leaves and twigs of I. rotunda could be promising candidates for developing therapeutic strategies to treat anti-inflammatory diseases. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Medicinal Plants)
Show Figures

Figure 1

13 pages, 3995 KiB  
Article
Coumarins with Different Substituents from Leonurus japonicus Have Opposite Effects on Uterine Smooth Muscle
by Yunqiu Fan, Chenhao Liu, Fang Wang, Lei Li, Yuqin Guo, Qinmei Zhou and Liang Xiong
Int. J. Mol. Sci. 2024, 25(18), 10162; https://doi.org/10.3390/ijms251810162 - 21 Sep 2024
Viewed by 906
Abstract
Leonurus japonicus Houtt is an exceptional medicinal herb used to treat obstetrical and gynecological diseases in traditional Chinese medicine, and it has significant effects on the treatment of dysmenorrhea and postpartum hemorrhage. This study investigated the effects of coumarins with diverse substituent groups [...] Read more.
Leonurus japonicus Houtt is an exceptional medicinal herb used to treat obstetrical and gynecological diseases in traditional Chinese medicine, and it has significant effects on the treatment of dysmenorrhea and postpartum hemorrhage. This study investigated the effects of coumarins with diverse substituent groups from L. japonicus on isolated uterine smooth muscle and the preliminary mechanism of the most effective compound. Eight coumarins isolated from L. japonicus were assessed for their effects on the isolated uterine smooth muscle of nonpregnant rats in vitro. Coumarins 1 and 2 significantly promoted the contraction of rat uterine smooth muscle strips, whereas coumarins 35 showed remarkable relaxing effects against oxytocin (OT)-induced rat uterine smooth muscle contraction. Further mechanism investigations revealed that bergapten (coumarin 1) significantly increased the level of Ca2+ in uterine tissues by promoting extracellular Ca2+ influx and intracellular Ca2+ release, which were related to the activation of L-type Ca2+ channels and α-receptors. By contrast, osthole (coumarin 5), an α receptor antagonist, inhibited OT-induced uterine smooth muscle contraction by decreasing the level of Ca2+ in uterine tissues via inhibition of extracellular Ca2+ influx and intracellular Ca2+ release. This study demonstrates that the coumarins from L. japonicus are effective substances for regulating uterine smooth muscle contraction, but different coumarins with diverse substituent groups have different, even opposite effects. It can be inferred that coumarins are closely related to the efficacy of L. japonicus in the treatment of dysmenorrhea and postpartum hemorrhage. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop