ijms-logo

Journal Browser

Journal Browser

Advances in Molecular and Translational Medicine: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 11254

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue, "Advances in Molecular and Translational Medicine 2.0", is framed in the context of the most recent discoveries and achievements in biomedical research, which, together with the modern technological and applicative advances in medicine, are evolving towards a revolutionary approach to understanding human diseases and discovering new therapeutic methods. The study of the molecular and cellular mechanisms that regulate complex systems requires an intense interaction between basic and applied research. Translational medicine combines biomedical skills and advancements in basic research with clinical reality. For this Special Issue, original and observational studies, as well as reviews, clinical cases and proof-of concepts in the broad fields of laboratory, clinical and health research, are welcomed.

Dr. Mariarosaria Boccellino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular pathology
  • biomarkers
  • signature transduction
  • cell signaling
  • molecular mechanisms
  • translational research
  • pathophysiology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4050 KiB  
Article
Is Component-Specific Antibody Testing Sufficient to Replace the Oral Food Challenge in the Diagnostics of Peanut-Sensitized Children? A Proof-of-Concept Study
by Klementyna Łyżwa, Klaudia Prasek, Anna Krupa-Łaska, Joanna Zielińska, Alicja Krejner-Bienias, Magdalena Chojnowska-Wójtowicz, Wioletta Zagórska, Marek Kulus, Adam Grzela, Tomasz Grzela and Katarzyna Grzela
Int. J. Mol. Sci. 2024, 25(13), 7415; https://doi.org/10.3390/ijms25137415 - 6 Jul 2024
Viewed by 904
Abstract
(1) Peanut allergy is associated with high risk of anaphylaxis which could be prevented by oral immunotherapy. Patients eligible for immunotherapy are selected on the basis of a food challenge, although currently the assessment of antibodies against main peanut molecules (Ara h 1, [...] Read more.
(1) Peanut allergy is associated with high risk of anaphylaxis which could be prevented by oral immunotherapy. Patients eligible for immunotherapy are selected on the basis of a food challenge, although currently the assessment of antibodies against main peanut molecules (Ara h 1, 2, 3 and 6) is thought to be another option. (2) The current study assessed the relationship between the mentioned antibodies, challenge outcomes, skin tests and some other parameters in peanut-sensitized children. It involved 74 children, divided into two groups, based on their response to a food challenge. (3) Both groups differed in results of skin tests, levels of component-specific antibodies and peanut exposure history. The antibody levels were then used to calculate thresholds for prediction of challenge results or symptom severity. While the antibody-based challenge prediction revealed statistical significance, it failed in cases of severe symptoms. Furthermore, no significant correlation was observed between antibody levels, symptom-eliciting doses and the risk of severe anaphylaxis. Although in some patients it could result from interference with IgG4, the latter would not be a universal explanation of this phenomenon. (4) Despite some limitations, antibody-based screening may be an alternative to the food challenge, although its clinical relevance still requires further studies. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

18 pages, 1344 KiB  
Article
Key Regulators of Angiogenesis and Inflammation Are Dysregulated in Patients with Varicose Veins
by Daniel Zalewski, Paulina Chmiel, Przemysław Kołodziej, Marcin Kocki, Marcin Feldo, Janusz Kocki and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2024, 25(12), 6785; https://doi.org/10.3390/ijms25126785 - 20 Jun 2024
Viewed by 1485
Abstract
Varicose veins (VVs) are the most common manifestation of chronic venous disease (CVD) and appear as abnormally enlarged and tortuous superficial veins. VVs result from functional abnormalities in the venous circulation of the lower extremities, such as venous hypertension, venous valve incompetence, and [...] Read more.
Varicose veins (VVs) are the most common manifestation of chronic venous disease (CVD) and appear as abnormally enlarged and tortuous superficial veins. VVs result from functional abnormalities in the venous circulation of the lower extremities, such as venous hypertension, venous valve incompetence, and venous reflux. Previous studies indicate that enhanced angiogenesis and inflammation contribute to the progression and onset of VVs; however, dysregulations in signaling pathways associated with these processes in VVs patients are poorly understood. Therefore, in our study, we aimed to identify key regulators of angiogenesis and inflammation that are dysregulated in patients with VVs. Expression levels of 18 genes were analyzed in peripheral blood mononuclear cells (PBMC) using real-time PCR, as well as plasma levels of 6 proteins were investigated using ELISA. Higher levels of CCL5, PDGFA, VEGFC, TGF-alpha, TGF-beta 1, and VEGF-A, as well as lower levels of VEGFB and VEGF-C, were found to be statistically significant in the VV group compared to the control subjects without VVs. None of the analyzed factors was associated with the venous localization of the varicosities. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors in PBMC and plasma from VVs patients, providing new insight into molecular mechanisms that could contribute to the development of VVs and point out promising candidates for circulatory biomarkers of this disease. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

28 pages, 17205 KiB  
Article
hTERT Peptide Fragment GV1001 Prevents the Development of Porphyromonas gingivalis-Induced Periodontal Disease and Systemic Disorders in ApoE-Deficient Mice
by Wei Chen, Sharon Y. Kim, Alicia Lee, Yun-Jeong Kim, Chungyu Chang, Hung Ton-That, Reuben Kim, Sangjae Kim and No-Hee Park
Int. J. Mol. Sci. 2024, 25(11), 6126; https://doi.org/10.3390/ijms25116126 - 1 Jun 2024
Cited by 1 | Viewed by 1788
Abstract
GV1001, an anticancer vaccine, exhibits other biological functions, including anti-inflammatory and antioxidant activity. It also suppresses the development of ligature-induced periodontitis in mice. Porphyromonas gingivalis (Pg), a major human oral bacterium implicated in the development of periodontitis, is associated with various [...] Read more.
GV1001, an anticancer vaccine, exhibits other biological functions, including anti-inflammatory and antioxidant activity. It also suppresses the development of ligature-induced periodontitis in mice. Porphyromonas gingivalis (Pg), a major human oral bacterium implicated in the development of periodontitis, is associated with various systemic disorders, such as atherosclerosis and Alzheimer’s disease (AD). This study aimed to explore the protective effects of GV1001 against Pg-induced periodontal disease, atherosclerosis, and AD-like conditions in Apolipoprotein (ApoE)-deficient mice. GV1001 effectively mitigated the development of Pg-induced periodontal disease, atherosclerosis, and AD-like conditions by counteracting Pg-induced local and systemic inflammation, partly by inhibiting the accumulation of Pg DNA aggregates, Pg lipopolysaccharides (LPS), and gingipains in the gingival tissue, arterial wall, and brain. GV1001 attenuated the development of atherosclerosis by inhibiting vascular inflammation, lipid deposition in the arterial wall, endothelial to mesenchymal cell transition (EndMT), the expression of Cluster of Differentiation 47 (CD47) from arterial smooth muscle cells, and the formation of foam cells in mice with Pg-induced periodontal disease. GV1001 also suppressed the accumulation of AD biomarkers in the brains of mice with periodontal disease. Overall, these findings suggest that GV1001 holds promise as a preventive agent in the development of atherosclerosis and AD-like conditions associated with periodontal disease. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

12 pages, 4478 KiB  
Article
Efficacy of Integrated Risk Score Using Omics-Based Biomarkers for the Prediction of Acute Rejection in Kidney Transplantation: A Randomized Prospective Pilot Study
by Jeong-Hoon Lim, Byung Ha Chung, Sang-Ho Lee, Jong Soo Lee, Yeong Hoon Kim, Man-Hoon Han, Hee-Yeon Jung, Ji-Young Choi, Jang-Hee Cho, Sun-Hee Park, Yong-Lim Kim and Chan-Duck Kim
Int. J. Mol. Sci. 2024, 25(10), 5139; https://doi.org/10.3390/ijms25105139 - 9 May 2024
Cited by 2 | Viewed by 1375
Abstract
Acute rejection (AR) is critical for long-term graft survival in kidney transplant recipients (KTRs). This study aimed to evaluate the efficacy of the integrated risk score of omics-based biomarkers in predicting AR in KTRs. This prospective, randomized, controlled, multicenter, pilot study enrolled 40 [...] Read more.
Acute rejection (AR) is critical for long-term graft survival in kidney transplant recipients (KTRs). This study aimed to evaluate the efficacy of the integrated risk score of omics-based biomarkers in predicting AR in KTRs. This prospective, randomized, controlled, multicenter, pilot study enrolled 40 patients who recently underwent high-immunologic-risk kidney transplantation (KT). Five omics biomarkers were measured, namely, blood mRNA (three-gene signature), urinary exosomal miRNA (three-gene signature), urinary mRNA (six-gene signature), and two urinary exosomal proteins (hemopexin and tetraspanin-1) at 2 weeks and every 4 weeks after KT for 1 year. An integrated risk score was generated by summing each biomarker up. The biomarker group was informed about the integrated risk scores and used to adjust immunosuppression, but not the control group. The outcomes were graft function and frequency of graft biopsy. Sixteen patients in the biomarker group and nineteen in the control group completed the study. The mean estimated glomerular filtration rate after KT did not differ between the groups. Graft biopsy was performed in two patients (12.5%) and nine (47.4%) in the biomarker and control groups, respectively, with the proportion being significantly lower in the biomarker group (p = 0.027). One patient (6.3%) in the biomarker group and two (10.5%) in the control group were diagnosed with AR, and the AR incidence did not differ between the groups. The tacrolimus trough level was significantly lower in the biomarker group than in the control group at 1 year after KT (p = 0.006). Integrated omics biomarker monitoring may help prevent unnecessary or high-complication-risk biopsy and enables tailored immunosuppression by predicting the risk of AR in KTRs. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 743 KiB  
Review
Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases?
by Nadia Papini, Paola Giussani and Cristina Tringali
Int. J. Mol. Sci. 2024, 25(16), 8884; https://doi.org/10.3390/ijms25168884 - 15 Aug 2024
Viewed by 1411
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, [...] Read more.
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

20 pages, 2391 KiB  
Review
The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers
by Alfar Ahamed, Rendy Hosea, Shourong Wu and Vivi Kasim
Int. J. Mol. Sci. 2023, 24(24), 17238; https://doi.org/10.3390/ijms242417238 - 7 Dec 2023
Cited by 8 | Viewed by 3151
Abstract
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of [...] Read more.
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges—including side effects—still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop