ijms-logo

Journal Browser

Journal Browser

Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications 3.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biophysics".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 17240

Special Issue Editor


E-Mail Website
Guest Editor
Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia
Interests: bioluminescent and fluorescent proteins; molecular mechanism of bioluminescence; structure of bioluminescent proteins; bioluminescent analysis and imaging; BRET technologies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioluminescence, a natural phenomenon of visible light emission by living organisms, has been found in numerous terrestrial and marine organisms. The study of bioluminescent reactions in organisms has revealed a specific feature—the mechanisms underlying light emission considerably differ in species of different taxa. Both the substrates and cofactors involved in bioluminescence reactions as well as the enzymes catalyzing these reactions have turned out to be peculiar. In addition to luciferases, many bioluminescence systems contain “antenna” proteins, such as Green fluorescent protein (GFP), which e.g., modulate the bioluminescence color by means of energy transfer. Although investigation of bioluminescence and fluorescence proteins is undoubtedly of fundamental interest, the main driving force that has attracted researchers to this topic is the broad analytical potential of bioluminescent proteins. Currently, there are no fields of biology or medicine where bioluminescence could not be widely used. This Special Issue of the International Journal of Molecular Science is devoted to experimental and theoretical studies on functioning mechanisms of bioluminescent proteins from various organisms, the proteins involved in bioluminescence (the lumazine protein, GFP and GPF-like proteins, and the enzymes participating in the synthesis of substrates), novel assays with the use of these proteins, and applications of these proteins in experimental biology and medicine. We invite authors to present their latest research in related fields.

Dr. Eugene S. Vysotski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioluminescence
  • luciferase
  • photoprotein
  • luciferin
  • coelenterazine
  • GFP
  • GFP-like proteins
  • immuno and hybridization assays
  • BRET and FRET assays
  • imaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

11 pages, 2047 KiB  
Editorial
Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications
by Eugene S. Vysotski
Int. J. Mol. Sci. 2023, 24(1), 281; https://doi.org/10.3390/ijms24010281 - 23 Dec 2022
Cited by 2 | Viewed by 2263
Abstract
Light emission by living organisms in the visible spectrum range is called bioluminescence [...] Full article
Show Figures

Figure 1

Research

Jump to: Editorial

15 pages, 1686 KiB  
Article
Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore
by Konstantin G. Chernov, Kyrylo Yu. Manoilov, Olena S. Oliinyk, Daria M. Shcherbakova and Vladislav V. Verkhusha
Int. J. Mol. Sci. 2023, 24(7), 6526; https://doi.org/10.3390/ijms24076526 - 30 Mar 2023
Cited by 1 | Viewed by 2123
Abstract
Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation [...] Read more.
Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes. Full article
Show Figures

Figure 1

10 pages, 2315 KiB  
Article
Crystal Structure of Bright Fluorescent Protein BrUSLEE with Subnanosecond Fluorescence Lifetime; Electric and Dynamic Properties
by Ekaterina Goryacheva, Roman Efremov, Nikolai Krylov, Igor Artemyev, Alexey Bogdanov, Anastasia Mamontova, Sergei Pletnev, Nadya Pletneva and Vladimir Pletnev
Int. J. Mol. Sci. 2023, 24(7), 6403; https://doi.org/10.3390/ijms24076403 - 29 Mar 2023
Viewed by 1846
Abstract
The rapid development of new microscopy techniques for cell biology has exposed the need for genetically encoded fluorescent tags with special properties. Fluorescent biomarkers of the same color and spectral range and different fluorescent lifetimes (FLs) became useful for fluorescent lifetime image microscopy [...] Read more.
The rapid development of new microscopy techniques for cell biology has exposed the need for genetically encoded fluorescent tags with special properties. Fluorescent biomarkers of the same color and spectral range and different fluorescent lifetimes (FLs) became useful for fluorescent lifetime image microscopy (FLIM). One such tag, the green fluorescent protein BrUSLEE (Bright Ultimately Short Lifetime Enhanced Emitter), having an extremely short subnanosecond component of fluorescence lifetime (FL~0.66 ns) and exceptional fluorescence brightness, was designed for FLIM experiments. Here, we present the X-ray structure and discuss the structure-functional relations of BrUSLEE. Its development from the EGFP (enhanced green fluorescent proteins) precursor (FL~2.83 ns) resulted in a change of the chromophore microenvironment due to a significant alteration in the side chain conformations. To get further insight into molecular details explaining the observed differences in the photophysical properties of these proteins, we studied their structural, dynamic, and electric properties by all-atom molecular-dynamics simulations in an aqueous solution. It has been shown that compared to BrUSLEE, the mobility of the chromophore in the EGFP is noticeably limited by nonbonded interactions (mainly H-bonds) with the neighboring residues. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
S-Series Coelenterazine-Driven Combinatorial Bioluminescence Imaging Systems for Mammalian Cells
by Genta Kamiya, Nobuo Kitada, Tadaomi Furuta, Takashi Hirano, Shojiro A. Maki and Sung-Bae Kim
Int. J. Mol. Sci. 2023, 24(2), 1420; https://doi.org/10.3390/ijms24021420 - 11 Jan 2023
Cited by 9 | Viewed by 3521
Abstract
A unique combinatorial bioluminescence (BL) imaging system was developed for determining molecular events in mammalian cells with various colors and BL intensity patterns. This imaging system consists of one or multiple reporter luciferases and a series of novel coelenterazine (CTZ) analogues named “S-series”. [...] Read more.
A unique combinatorial bioluminescence (BL) imaging system was developed for determining molecular events in mammalian cells with various colors and BL intensity patterns. This imaging system consists of one or multiple reporter luciferases and a series of novel coelenterazine (CTZ) analogues named “S-series”. For this study, ten kinds of novel S-series CTZ analogues were synthesized and characterized concerning the BL intensities, spectra, colors, and specificity of various marine luciferases. The characterization revealed that the S-series CTZ analogues luminesce with blue-to-orange-colored BL spectra with marine luciferases, where the most red-shifted BL spectrum peaked at 583 nm. The colors completed a visible light color palette with those of our precedent C-series CTZ analogues. The synthesized substrates S1, S5, S6, and S7 were found to have a unique specificity with marine luciferases, such as R86SG, NanoLuc (shortly, NLuc), and ALuc16. They collectively showed unique BL intensity patterns to identify the marine luciferases together with colors. The marine luciferases, R86SG, NLuc, and ALuc16, were multiplexed into multi-reporter systems, the signals of which were quantitatively unmixed with the specific substrates. When the utility was applied to a single-chain molecular strain probe, the imaging system simultaneously reported three different optical indexes for a ligand, i.e., unique BL intensity and color patterns for identifying the reporters, together with the ligand-specific fold intensities in mammalian cells. This study directs a new combinatorial BL imaging system to specific image molecular events in mammalian cells with multiple optical indexes. Full article
Show Figures

Figure 1

19 pages, 26447 KiB  
Article
Direct or Indirect ESPT Mechanism in CFP psamFP488? A Theoretical-Computational Investigation
by Greta Donati and Nadia Rega
Int. J. Mol. Sci. 2022, 23(24), 15640; https://doi.org/10.3390/ijms232415640 - 9 Dec 2022
Viewed by 1282
Abstract
Fluorescent Proteins are widely studied for their multiple applications in technological and biotechnological fields. Despite this, they continue to represent a challenge in terms of a complete understanding of all the non-equilibrium photo-induced processes that rule their properties. In this context, a theoretical-computational [...] Read more.
Fluorescent Proteins are widely studied for their multiple applications in technological and biotechnological fields. Despite this, they continue to represent a challenge in terms of a complete understanding of all the non-equilibrium photo-induced processes that rule their properties. In this context, a theoretical-computational approach can support experimental results in unveiling and understanding the processes taking place after electronic excitation. A non-standard cyan fluorescent protein, psamFP488, is characterized by an absorption maximum that is blue-shifted in comparison to other cyan fluorescent proteins. This protein is characterized by an extended Stokes shift and an ultrafast (170 fs) excited state proton transfer. In this work, a theoretical-computational study, including excited state ab initio dynamics, is performed to help understanding the reaction mechanism and propose new hypotheses on the role of the residues surrounding the chromophore. Our results suggest that the proton transfer could be indirect toward the acceptor (Glu167) and involves other residues surrounding the chromophore, despite the ultrafast kinetics. Full article
Show Figures

Figure 1

21 pages, 6358 KiB  
Article
cNTnC and fYTnC2, Genetically Encoded Green Calcium Indicators Based on Troponin C from Fast Animals
by Oksana M. Subach, Anna V. Vlaskina, Yuliya K. Agapova, Dmitriy A. Korzhenevskiy, Alena Y. Nikolaeva, Anna M. Varizhuk, Maksim F. Subach, Maxim V. Patrushev, Kiryl D. Piatkevich, Konstantin M. Boyko and Fedor V. Subach
Int. J. Mol. Sci. 2022, 23(23), 14614; https://doi.org/10.3390/ijms232314614 - 23 Nov 2022
Cited by 5 | Viewed by 1829
Abstract
NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of [...] Read more.
NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively. Full article
Show Figures

Figure 1

15 pages, 2163 KiB  
Article
Investigation of the Anticancer and Drug Combination Potential of Brominated Coelenteramines toward Breast and Prostate Cancer
by Carla M. Magalhães, Patricia González-Berdullas, Mariana Pereira, Diana Duarte, Nuno Vale, Joaquim C. G. Esteves da Silva and Luís Pinto da Silva
Int. J. Mol. Sci. 2022, 23(22), 13981; https://doi.org/10.3390/ijms232213981 - 12 Nov 2022
Cited by 2 | Viewed by 1781
Abstract
Cancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated [...] Read more.
Cancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated coelenteramines, which are metabolic products and synthesis precursors of the chemi-/bioluminescent system of marine coelenterazine. The evaluation of the anticancer potential of these molecules was carried out for both prostate and breast cancer, while also exploring their potential for use in combination therapy. Our results provided further insight into the structure–activity relationship of this type of molecule, such as their high structural specificity, as well highlighting the 4-bromophenyl moiety as essential for the anticancer activity. The obtained data also indicated that, despite their similarity, the anticancer activity displayed by both brominated coelenteramines and coelenterazines should arise from independent mechanisms of action. Finally, one of the studied coelenteramines was able to improve the profile of a known chemotherapeutic agent, even at concentrations in which its anticancer activity was not relevant. Thus, our work showed the potential of different components of marine chemi-/bioluminescent systems as novel anticancer molecules, while providing useful information for future optimizations. Full article
Show Figures

Figure 1

14 pages, 2713 KiB  
Article
C-Series Coelenterazine-Driven Bioluminescence Signature Imaging
by Genta Kamiya, Nobuo Kitada, Tadaomi Furuta, Takashi Hirano, Shojiro Maki and Sung Bae Kim
Int. J. Mol. Sci. 2022, 23(21), 13047; https://doi.org/10.3390/ijms232113047 - 27 Oct 2022
Cited by 7 | Viewed by 1839
Abstract
The present study introduces a unique BL signature imaging system with novel CTZ analogues named “C-series.” Nine kinds of C-series CTZ analogues were first synthesized, and BL intensity patterns and spectra were then examined according to the marine luciferases. The results show that [...] Read more.
The present study introduces a unique BL signature imaging system with novel CTZ analogues named “C-series.” Nine kinds of C-series CTZ analogues were first synthesized, and BL intensity patterns and spectra were then examined according to the marine luciferases. The results show that the four CTZ analogues named C3, C4, C6, and C7, individually or collectively luminesce with completely distinctive BL spectral signatures and intensity patterns according to the luciferases: Renilla luciferase (RLuc), NanoLuc, and artificial luciferase (ALuc). The signatural reporters were multiplexed into a multi-reporter system comprising RLuc8.6-535SG and ALuc16. The usefulness of the signatural reporters was further determined with a multi-probe system that consists of two single-chain probes embedding RLuc8 and ALuc23. This study is a great addition to the study of conventional bioassays with a unique methodology, and for the specification of each signal in a single- or multi-reporter system using unique BL signatures and patterns of reporter luciferases. Full article
Show Figures

Figure 1

Back to TopTop